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1.1 Modelling in biological oceanography 

Biological oceanographers are ambivalent about modelling (Miller 2004). Many are 

concerned that mathematical simulation over-simplifies the natural plankton 

ecosystem. That is not contested. However modelling can still contribute to biological 

oceanography. The goal of this book is to justify that claim. It does so in two ways.  

1. By establishing the scientific integrity of a new method for mathematical 

simulation called Virtual Plankton Ecology. Theory and practice are presented 

in Parts 1 and 2 respectively. 

2. By demonstrating how this new method can contribute to biological 

oceanography. This is done in Part 3 by using virtual ecology to investigate 

the classical paradigms of biological oceanography. The proof of the pudding 

lies in the eating. 

Chapter 1 opens the discussion on the first theme: scientific integrity. It introduces the 

key ideas of virtual plankton ecology. It is like the overture of an opera, which brings 

together themes that will be developed in full later. It presents in brief form the pre-

requisites for best practice in modelling the plankton ecosystem. They are the 

Principles of Virtual Ecology. 

But first we need to address the issue of over-simplification, which causes biological 

oceanographers to worry about the value of modelling, even when performed well. To 

do so we quantify the complexity of first the natural ecosystem and then a typical 

virtual ecosystem. 

1.2 Quantifying complexity 

We compare the information contents of natural and simulated ecosystems, both 

located in mid-ocean off the Azores.  They are contained in a water column that has 

the form of a vertical tube extending from the sea surface to a depth of one kilometre 

with a horizontal cross-section of one square metre. They are both computationally 

complex.3 Their descriptions of the environment contain about the same information. 

                                                        
3 Computational complexity is an expression used by information theorists to describe the 
inherent complexity of a system (Traub, J. F. and A. G. Werschulz (1998). Complexity and 
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The difference lies in the number of plankters and, more importantly, in the number of 

species. 

1.2.1 The natural ecosystem 

We divide the ecosystem into two parts: the environment and the plankton. The 

physical environment can be described by vertical profiles of solar radiation, 

temperature, density, horizontal currents, upwelling and turbulence. These profiles all 

contain fine structure that is ecologically important. The spectrum of this fine 

structure extends to about one decimeter. The same is true for the profiles of dissolved 

chemical concentrations. The spectral limit is set by molecular conduction and 

diffusion. We may need to include the profiles of ten or more dissolved chemicals. So 

a synoptic description of the physical and chemical properties of the environment in 

the mesoscosm requires about one million values. 

But the complexity of the environment is tiny compared with that of the plankton. 

(Miller 2004) and (Longhurst 1998) estimate that a thousand species of plankton 

might be encountered in the water column.4 The same authors estimate the minimum 

number of plankters in one thousand cubic metres of our water column: 105 

macroplankters and 1015 bacteria. The numbers vary seasonally. And the distribution 

of plankton in the ocean is observed to be patchy with two orders of magnitude 

variation in concentration within a 100km area. But the values cited above will serve 

our purpose of highlighting the difference in complexity between natural and 

simulated ecosystems.  

1.2.2 The virtual ecosystem 

Now we assess the complexity of a virtual ecosystem in the same water column off 

the Azores. The data come from the case study in chapter 10. The environmental 

fields are resolved to one-metre, which is an order of magnitude coarser than the fine 

structure in the natural ecosystem. However it is feasible to increase the vertical 

                                                        

information. Cambridge, Cambridge University Press.). It does not refer to the efficiency of a 
computer program used to model the system, although we shall see later that VPE codes are 
indeed complex (Chapter 7). 
4 One plankton net tow can sample the 1000 m3 volume of the water column used in this 
discussion, but it may take many tows at the same site to encounter all 1000 species. 
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resolution to match that in nature. So the difference in complexity does not depend 

critically on how the environment is modelled. 

The plankton are described by computer agents, each of which follows an 

independent trajectory through the water and carries two kinds of information. The 

first describes the number of identical plankters in its sub-population. The second 

describes the biological state of those plankters. The virtual ecosystem in chapter 10 

uses about one million agents. Summing the sub-populations gives the total number of 

plankters in the water column. That sum is performed separately for each species. The 

number of agents determines the demographic complexity of the simulation. It is three 

orders of magnitude less than the number of plankters in the natural ecosystem. 

However, we shall see in chapter two that this is not a limiting factor, provided the 

number of agents is sufficient to simulate the statistics of intra-population variability 

with an acceptable signal-to-noise ratio.  

 
Box 1.1    The complexity of a virtual plankton ecosystems 

 Property   Azores virtual ecosystem in Ch.10 

Water column 
      Horizontal cross-section   1 square metre    
      Vertical extent   1 km 
      Habitat     open ocean  (depth of ocean floor >> 1 km)  
      Area     27°-28°W, 40°-41°N 
      Layers    1m thick 

Environment   
       Light                                                                  25 wavebands 
       Nutrients                                                         N, Si 

Demography (plankters/m2)          
      Diatoms        106 ‐109    seasonal range 
      Copepods        103 ‐ 106   seasonal range 
      Squid        103 
      Bacteria      106 

Computer agents      106  

Number of species 
     Phytoplankton       1 
     Zooplankton       4 
    Bacteria      1 
 

The real problem lies in the fact that the number of species represented in the model 

plankton community is very much less than in the natural ecosystem. The case study 

in Chapter 10 uses a model with only six species: one each for bacteria, 
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phytoplankton, herbivorous and carnivorous zooplankton, and two for top predators. 

More species are used in the numerical experiments reported in other chapters. For 

example, chapter 18 models competition between 16 species of phytoplankton. 

However, in all the simulations described in this book the number of model species is 

orders of magnitude lower than those observed in the natural ecosystem. As modellers 

gain access to more powerful computers they will be able to create models with more 

species, but it is unlikely that the diversity gap between model and reality will ever be 

closed. That is true regardless of the metamodel used to generate the simulation. 

Classical population-based modelling (PBM) is computationally cheaper than agent-

based modelling like VPE.  But even complex PB models like ERSEM (Baretta-

Bekker and Baretta 1997) uses only 16 species.  

1.2.3 The way ahead 

It is this diversity gap that leads biological oceanographers to doubt the value of 

computer simulation. There is no procedure that can close it. The usual compromise is 

to design model plankton communities that minimize the impact of inadequate 

diversity. They can do so by concentrating on the most abundant species, and adding 

functional groups to represent the remaining species. We shall explore these options 

in Chapter 6. It goes without saying that the modelling procedure must avoid 

unnecessary loss of information, for example neglecting intra-population variability 

(see §1.9 below). Whatever the procedure, the model complexity will always be 

woefully inadequate when it comes to species diversity. 

However, that does not necessarily mean that computer simulation has no value. It 

means that we have to demonstrate its value by comparison with the results of 

observations (see §1.16 below). There will always be a diversity gap, but we shall 

show that many of the predictions of virtual ecosystems are not particularly sensitive 

to that shortcoming. 

1.2.4 Sensitivity of predictions to species diversity 

In general, we expect some ecological predictions to be more sensitive than others to 

a lack of species diversity. For example, the numerical experiment of (Liu and Woods 

2004) showed that increasing the number of phytoplankton species from one to three 

eliminated the gap between predicted and observed timing of the annual maximum 
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perturbation of ocean colour, a surrogate for the annual maximum concentration of 

chlorophyll in the mixed layer (see below §1.16.9). That procedure might be applied 

to other ecological phenomena identified in virtual ecosystems. In each case the 

sensitivity to species diversity can be assessed by a batch of experiments with 

progressively increasing diversity. We expect that the benefit of adding more species 

to the model will eventually decrease until it becomes lost in the noise of those 

properties used to define the phenomenon. They are normally time series of the values 

of environmental fields. Furthermore, adding more species to the model becomes 

redundant when the gap is closed between prediction and observation of those 

defining properties.  

When the biological model includes sufficient species for the VE to pass the 

Ecological Turing Test (see §1.16 below) we are confident that the VE simulation of 

this particular ecological phenomenon is not contaminated by lack of species 

diversity. Following this procedure we can rank the various ecological phenomena in 

terms of their sensitivity to species diversity. That will guide us in deciding how many 

species are needed to qualify an ecological phenomenon for analysis by virtual 

ecology. We can then use the power of audit trails to improve understanding of these 

ecological phenomena. The procedure is demonstrated in Part 3, where we use virtual 

ecology to re-examine classical paradigms of biological oceanography. Part 4 goes 

further by considering how qualifying ecological phenomena might provide a secure 

basis for prediction in operational oceanography.  In conclusion, while all models of 

the plankton ecosystem have many fewer species than in nature, we have a rational 

procedure for discovering how many species are needed in a virtual ecosystem for it 

to make predictions that are useful for biological and operational oceanography. 

1.2.5 Success with other complex systems 

One reason for being cautiously optimistic is that mathematical simulations of many 

other complex systems do yield useful predictions.  That is the case in weather 

forecasting, ocean circulation and climate prediction. The same approach is used in an 

increasing range of engineering applications. It is becoming normal practice to rely on 

mathematical simulation rather than live action. Examples include virtual tests of 

nuclear bombs, aero-engines and motorcar crashes. Models based on quantum 

mechanics are used to design complicated molecules needed by the pharmaceutical 
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industry. Licensing authorities increasingly accept the evidence of mathematical 

simulation. Pilots can obtain licences to fly new planes by demonstrating their skills 

on simulators. 

Most of these practical applications of mathematical simulation of complex systems 

use equations that describe the laws of physics.5 In this chapter we explore the 

prospect for extending this approach to the plankton ecosystem.  This requires multi-

disciplinary models comprising equations for processes in marine physics, chemistry 

and biology. The main challenge is to describe the biological processes of plankton.  

1.2.6 Complexity science 

A new scientific discipline, complexity science, has been built on these practical 

applications of mathematical simulation on high performance computers. Initially 

applications tended to focus on models with physical equations, but scientists at the 

Santa Fe institute and elsewhere have extended the subject into the world of social 

sciences, economics and business (Waldrop 1992). They have published SWARM, a 

rich library of computer routines designed to ease building models of complex 

systems. SWARM is particularly effective in rapid prototyping. Woods et al (2007) 

used it for Container World, which simulates the global freight system. (Grimm and 

Railsback 2005) used SWARM to model ecosystems. McLane (2001) used it to build 

an individual-based model of the plankton ecosystem. But SWARM is cumbersome 

and slow. Projects needing many numerical experiments are better written in purpose-

build code. Java is well suited to agent-based modelling. It runs on any personal 

computer with a Java compiler. Container World was re-written in Java. The Virtual 

Ecology Workbench is written in Java and it automatically writes runtime code in 

Java (§1.16).  

We now have a broad theoretical understanding of complex system simulations. Let 

us mention two examples. The first concerns the nature of stability in complex 

systems. Many are chaotic with limited predictability; they are described by strange 

attractors (Lorenz 1993). There has been a lively debate about whether or not the 

plankton ecosystem is intrinsically chaotic in a way that would place a limit on 

                                                        
5 In this book we define a model as a set of equations, and a simulation as the data set that 
results from integrating the model with prescribed initial and boundary conditions. 
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prediction, like the one-week limit on weather forecasting (see references cited in 

Woods et al. 2005). The second example concerns optimal procedures for 

assimilating observations into simulations (Lorenc 2002); we shall discuss this below 

(§1.14). This new understanding helps us to simulating the plankton ecosystem, 

which is even more complex than the examples mentioned above. It will inform the 

discussions throughout this book; and it is highlighted in chapter 8 (stability) and 

chapters 10 and 32 (observations and predictions). The success of complexity science 

depends on adopting a metamodel drawn from physics to address inter-disciplinary 

problems. Virtual ecology uses the Lagrangian Ensemble metamodel (Ch.2). 

1.3 The philosophy of virtual plankton ecology 

Now we turn to the main theme of this chapter, the unique features of VPE that make 

it different from other modelling techniques. Some techniques concentrate on a single 

ecological process. They follow Occam’s razor and eliminate all other processes. A 

well-known early example is (Sverdrup 1953)’s model of the spring bloom. Others 

provide basic biological functions in operational oceanography. A recent example is 

the NOCS-Met. Office Medusa model (New 2009).   

VPE is designed to provide theoretical support for biological oceanography. It 

produces simulations, Virtual Ecosystems (VEs), that are very much more complex 

than those created by other methods. The extra complexity allows each VE to include 

many interacting ecological processes. The aim is to create realistic simulations. Two 

aspects require further attention:  

• The present generation of VEs are one-dimensional and therefore do not 

simulate the patchiness created by mesoscale turbulence. This deficiency is 

being addressed (see Ch. 30). 

• Virtual ecosystems have a much smaller number of species than are found at 

the same site in the ocean. They typically have about 1% of the macro-

plankton species, and a much smaller fraction of the bacteria. However many 

ecological processes are insensitive to species diversity (§1.2.4 above) and the 

deficiency can be dealt by a modest increase in the number of species. 
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VPE is an extended version of individual-based modelling (Grimm and Railsback 

2005).  It simulates the life history of every plankter in the ecosystem contained in a 

virtual mesocosm. That information is used to compute the demography of each 

population, and its influence on the environment (biofeedback). That is the 

quintessence of VPE. However its success depends on having rethought all aspects of 

plankton ecology modelling. 

The philosophy of VPE is not merely an extension of previous modelling practice. It 

has been built up from first principles, from a tabula rasa. The result is a distinct 

approach to every aspect of the subject. In some cases VPE practice echoes classical 

modelling, but in others it is new. A notable example is the emphasis on assessing and 

controlling errors in emergent properties. That leads to a new way to compare model 

predictions with observations. Another example is the need to balance a virtual 

ecosystem, so that it settles on a stable attractor, before embarking on scientific 

analysis. That changes the practice of data assimilation and prediction. 

This philosophy has but one aim. It is to ensure that VPE is fit for purpose: that it is a 

reliable tool in theoretical plankton ecology, and therefore useful for biological 

oceanography. This demands scientific integrity. The philosophy will be explored in 

detail in the next ten chapters. The rest of this opening chapter will be devoted to a 

quick overview to show the scope of the philosophy before getting into detail. The 

topics selected for treatment here all contribute to making the new method 

trustworthy. Together they constitute the principles of virtual plankton ecology. 

1.4  Primitive equation modelling 

We start by identifying one of the principal differences between virtual ecology and 

other methods used to simulate the plankton ecosystem. It concerns the nature of the 

equations used to describe physical, chemical and biological processes in the 

ecosystem. These equations make up the model. The goal of VPE is to base the 

equations on the results of reproducible experiments performed under laboratory 

conditions. If that can be achieved the virtual ecosystem created by integrating the 

model under the conditions of external forcing will have secure scientific foundations. 

Modern weather forecasting depends on using such equations for physical processes 

in the atmosphere. Meteorologists call them “primitive equations”, and refer to 
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primitive equation modelling.6 Virtual plankton ecology depends on using primitive 

equations for biological as well as physical and chemical processes (Woods 2002). 

1.4.1 Biological primitive equations 

What are biological primitive equations? They describe the physiological or 

behavioural response of a plankter to the combination of (1) its own biological state, 

and (2) the environment at its location. The latter is called the plankter’s ambient 

environment. It is defined as the values that all the environmental fields7 have at its 

precise location (latitude, longitude and depth) at a given time. Such equations are 

called phenotypic. Phenotypic equations are derived by curve fitting to the results of 

reproducible experiments with plankton cultures. That gives them the same scientific 

stature as physical primitive equations. 

1.4.2 Individual‐based modelling 

Phenotypic equations describe the biological functions of an individual plankter. It 

follows that primitive equation modelling of the plankton ecosystem must adopt the 

procedures of individual-based modelling (DeAngelis and Gross 1992), (McGlade 

1999), (Grimm and Railsback 2005). The aim is to compute the life history of every 

plankter in the virtual ecosystem. Each plankter responds to its ambient environment, 

which has physical, chemical and biological components. The ambient biological 

environment is determined by the concentration of predators and prey in the 

plankter’s immediate vicinity. The local concentration of competitors of the same or 

different species influences the rates of depletion of shared resources. The response to 

predators often involves avoidance reaction (Kiørboe 2008). The response to prey 

involves foraging, capture and ingestion. These behavioural responses are described 

by phenotypic equations in the model. Other phenotypic equations describe the 

plankter’s physiological response to ingestion of prey (by zooplankters) or uptake of 

nutrients and light (by phytoplankters).  These equations are discussed in chapter 6. 

                                                        
6  Primitive equations in physics go back to Galileo’s investigation of acceleration. 
7  The fields describe the continuous variation of environment properties like solar irradiance, 
seawater temperature, chemical concentrations, and turbulent kinetic energy. They also 
include the concentration of each species of plankton present in the virtual ecosystem. In most 
cases, the plankton concentrations are categorized by the biological state, which includes 
growth stage of living plankton, the corpses of dead plankton and fæcal pellets of 
zooplankton.  
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1.4.3 Phenotypic rules 

Phenotypic equations are normally published as differential equations, implying that a 

plankter responds continuously to its ambient environment. In fact many biological 

processes are better described in terms of discrete events. There may be one or more 

such event in one time step of numerical integration. Reproduction and 

metamorphosis between growth stages are examples of biological events that are 

likely to occur only once in a half-hour time step. Other processes involve several 

events in one time step; for example, a plankter captures and ingests a number of prey 

in half an hour. Event-based biological processes are often better described by rules 

rather than differential equations. Inward looking rules state how to compute the new 

location or physiological state of a plankter. Outward looking rules describe the 

plankter’s impact on the environment. This biological requirement is consistent with 

expressing differential equations in finite difference form for numerical integration. In 

their textbook on individual-based modelling (Grimm and Railsback 2005) 

recommend that biological functions should be expressed as rules rather than 

equations. The typical imperative in biology is not “Thou shalt ….” but  “If … then 

… else … (Pinker 1997). So the phenotypic rule is often expressed as a Boolean 

statement. That practice is followed in virtual plankton ecology. The graphical 

interface of the Virtual Ecology Workbench makes it easy to enter biological 

functions in terms of such rules (Ch.7).  

1.5 The Lagrangian Ensemble metamodel 

Individual-based models are integrated by a technique developed in computer science 

called agent-based modelling (Billari, Fent et al. 2006). Each plankter is associated 

with a computer agent. The computation focuses on the changing properties of the 

agents. The final data set contains the life history of every agent, and the plankter it 

represents. (Grimm and Railsback 2005) describe how that procedure can be used to 

simulate ecosystems. It works well if the number of organisms in the ecosystem does 

not exceed the number of agents that can be computed. Modern computers can 

integrate models with several hundred thousand agents per processor. A dual-core 

laptop computer with two gigabytes of memory can simulate an ecosystem with 

approaching one million agents. That might suffice for modelling all the trees in a 
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wood. But it is inadequate for handling the plankton ecosystem in a mesoscosm 

containing one thousand cubic metres of water. There may be a billion 

macroplankters in that water column. So we cannot use classical agent-based 

modelling, with one agent per organism, to compute a virtual ecosystem. 

1.5.1 Lagrangian Ensemble modelling 

A key goal of virtual plankton ecology is to use the life histories of the individual 

plankters to compute demography and biofeedback as emergent properties. That only 

works if the virtual ecosystem contains the life histories of all the plankters featured in 

the model. So we have a problem. Personal computers may be able to compute 

models with a million agents, but we need to compute the life histories of billions of 

plankters. And the latter number is on the low side: it refers to a simple, one-

dimensional virtual ecosystem, such as that described in chapter 10.  

(Woods and Onken 1982) solved this problem by extending individual-based 

modelling to allow each computer agent to represent many plankters. They called this 

the Lagrangian Ensemble (LE) method.8 It has since been refined and extended to 

become a comprehensive metamodel for virtual ecology (Woods 2005). The 

metamodel involves a number of procedures. For example, LE modelling computes 

the rate of predation from the agent’s ambient concentration of prey. (i.e. it does not 

compute agent-agent interaction.) This and other aspects of the LE modelling will be 

detailed in chapter 2. Here we briefly introduce the main features.  

1.5.2 Lagrangian Ensemble agents 

In LE modelling each computer agent behaves like one plankter, as in classical 

individual-based modelling. It also carries demographic information about a sub-

population of plankters, all identical to that individual. So the agent carries three kinds 

of information: positional, biological and demographic. 

1. Its position, which changes in response to advection by the water, plus the 

plankter’s motion through (i.e. relative to) the water. Advection is computed 

from data on the local current vector and the intensity of turbulence (an 

                                                        
8 Many years later Scheffer, M., D. L. Baveco, et al. (1995). "A simple solution for modelling 
large populations on an individual basis." Ecological modelling 80: 161-170. rebranded LE 
modelling under the name “super particle”. 
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emergent property of the VE).  Motion through the water is computed from the 

plankter’s behaviour: sinking or swimming. 

2. The biological state of every plankter in the agent’s sub-population is updated 

each time step using the phenotypic rules in the model. 

3. The number of plankters in the agent’s sub-population increases when the 

plankters in the sub-population reproduce and their offspring remain in the 

parent sub-population. (That is the case for phytoplankton; the offspring of 

zooplankton are allocated to a new agent because the infants behave 

differently from their mother.) The number decreases when a predator eats 

some of the plankters in the sub-population, or when the plankters suffer from 

a disease that causes some to die while others recover (Ch.22). Finally, some 

causes of death (starvation, reproduction, senility) eliminate all the plankters 

in a sub-population simultaneously.  When that happens the sub-population 

becomes empty and its agent is removed from the computation.   

The demography of a population is computed by summing the plankters in all the 

agents used to describe that species. Biofeedback is computed by summing over all 

agents. 

1.5.3 Trajectories 

All the plankters in a sub-population follow the trajectory of its agent. They therefore 

experience the same history of ambient environment, which causes every member to 

develop in exactly the same way. All members of the sub-population experience life 

events such as metamorphosis, reproduction and death by starvation. But predation 

(including cannibalism) kills only a fraction of plankters in the sub-population in one 

time step.  

The LE metamodel accounts for all the plankters in a virtual ecosystem. But the 

number of independent trajectories is several orders of magnitude smaller than the 

number of plankters. That difference leads to a sampling error in computed 

demography. The error decreases as we use more agents for each species. For the case 

study in chapter 10 it is only a few percent of the signal if the number of agents 

exceeds 100,000 for the diatom population and 1000 each for copepod and squid 

populations. But many more agents are needed to avoid significant error in numerical 
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experiments that involve competition between species (Ch.18). In that case the 

demographic error must be less than the demographic difference between the 

competing populations, which may be less than 1%. 

1.6 External forcing 

Mathematical simulation starts with a model: a set of equations that describe all the 

processes controlling the inner working of the ecosystem. That is the endogenous part. 

The model is integrated forward in time under the influence of initial conditions, 

boundary conditions, ocean circulation and trophic closure. These four properties 

make up the exogenous part. We shall have more to say about the model (§1.3) and 

the method of integration (§1.4). Here we want to comment on best practice, and then 

to expand on the exogenous part. 

1.6.1 Best practice in modelling 

Best practice separates the endogenous and exogenous components. This starts in the 

flow chart that provides an overview of the procedure, and it continues in the program 

used to compute the simulation. The Virtual Ecology Workbench (1.17) embodies this 

discipline. 

1.6.2 The exogenous part 

The exogenous part comprises large data sets structured in space and time. Often the 

data are derived statistically from observations (such as the NOAA world ocean 

climate, (Levitus 1982)). In other cases they are emergent properties of models into 

which the observations have been assimilated (this is the case for weather and ocean 

circulation). A third group is derived from theory: for example, solar elevation and 

top predator demography. Exogenous data and equations are, by definition, unaffected 

by changes in the state variables of the ecosystem model; in other words they are 

insensitive to biofeedback. We now consider the four components. 

1.6.3 Initial conditions 

The initial conditions specify the values of all state variables at the start of the 

integration. These data may be derived from observations (synoptic or climatic) or 

they may be hypothetical (e.g. for What-if? Prediction, see chapter 8). In chapter 11 

we shall divide the initial conditions into two classes: those like nutrients that 
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influence the state of the ecosystem when it has adjusted to a balanced state (i.e. 

settled onto an attractor), and those that do not. Errors in the former are critical to the 

success of a prediction, but errors in the latter category automatically decay as the 

integration proceeds.  

1.6.4 Boundary conditions 

The boundary conditions provide external forcing at each time step in the integration.  

In virtual plankton ecology, the forcing comprises fluxes through the sea surface 

(momentum, solar radiation, net thermal radiation, heat, water, gases and dust). These 

fluxes are prescribed by exogenous equations (for astronomy) and data sets (for the 

atmosphere). It is assumed that changes in the ecosystem do not affect the 

atmosphere. Its variation with time is specified in the exogenous data set, which is 

prepared before the model is integrated (see Chapter 3). 

1.6.5 Ocean circulation 

The name plankton was coined to denote the fact that they drift with the ocean 

currents. Horizontal advection by the large-scale9 ocean circulation does change a 

plankter’s ambient environment sufficiently rapidly to affect its life history. In an 

extreme example, a copepod hatched off Florida may die off Scotland after being 

advected there by the Gulf Stream. The influence of ocean circulation on a virtual 

ecosystem is modelled by Geographically-Lagrangian integration (Ch.12). The virtual 

mesoscosm containing the VE drifts with the ocean circulation. Its geographical track 

is computed by Lagrangian integration of a four-dimensional array of vectors 

describing the ocean circulation. This exogenous data set is derived from an ocean 

general circulation model. The surface fluxes are computed at each location along the 

track by space-time interpolation of the three-dimensional (latitude, longitude and 

time) boundary layer data set.  

1.6.6 Trophic closure   

All models of the plankton ecosystem require trophic closure. It describes the 

depletion of zooplankton in the endogenous plankton community by top predators. 

The properties of top predators are described by exogenous equations and data sets, 

                                                        
9 We distinguish the large-scale permanent circulation (which may exhibit seasonal variation) 
from the transient eddies and jets that make up mesoscale turbulence. 
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which are unaffected by their ingestion of prey. This VPE procedure differs 

significantly from the endogenous closure rule used in most other modelling (Steele 

and Henderson 1995). The advantage is that it cleanly separates endogenous and 

exogenous predation. It also avoids artificial instability due to endogenous trophic 

closure (Caswell and Neubert 1998). 

1.7 Integration 

Virtual ecosystems are created by numerical integration of the model under the 

constraints of prescribed forcing. We use the Euler method of time-stepping 

integration in which the complete state of virtual ecosystem is updated at regular 

intervals. The default time step is half-an-hour. Forty-eight time steps per day 

normally provide adequate resolution of the diurnal cycle. However, some numerical 

experiments use a shorter time step: for example Barkmann & Woods (1996) used 

five-minute steps to simulate the flickering of ambient irradiance experienced by a 

phytoplankter displaced randomly by turbulence. 

VPE integration is deterministic. It does not depend on Monte Carlo modelling 

(Mangel and Clark 1988) or on fuzzy logic (Yager and Filev 1994), (McGlade and 

Novello-Hogarth 1997). However, there are two exceptions. The first applies to all 

virtual ecosystems: a random number generator is used to compute the displacement 

of plankters by turbulence. The second is Monte Carlo simulation of the vertical 

distribution of solar irradiance (Liu and Woods 2004). 

1.7.1 One‐dimensional modelling 

The numerical experiments described in this book simulate the plankton ecosystem in 

a one-dimensional virtual mesoscosm. All fluxes and particle motion are constrained 

to the vertical direction. So it is not possible to simulate the response of the plankton 

ecosystem to mesoscale turbulence. That requires a three-dimensional virtual 

ecosystem (see chapter 30).  Meanwhile there is much to be learnt from one-

dimensional modelling. In fact, with the exception of mesoscale turbulence, one-

dimensional virtual mesocosms contain most of the ecological processes of interest in 

biological oceanography. There are two reasons. The first is that the plankton live 

mainly in the seasonal boundary layer of the ocean, where vertical transport processes 



Virtual Plankton Ecology by Woods & Vallerga       - 27 - 

    

VIRTUAL PLANKTON ECOLOGY CH.1.docx           Last printed 27/08/2009 09:36 

control the structure of the environment. The second is that by definition, plankton 

cannot usefully change their ambient environment by swimming horizontally. The 

horizontal scales of environmental variation are too large for their swimming speed. 

Virtual ecology ignores the small scale horizontal movements known to exist in 

foraging and mating ((Kiørboe 2008). 

1.8 The Virtual Ecosystem 

Integrating the model under prescribed external forcing produces the virtual 

ecosystem. This is a large data set. It contains several gigabytes per simulated year. 

The VE comprises a time series of the complete state of the simulated ecosystem 

every half hour (or other time step). The state of the ecosystem at any instant is 

defined by its geographical location plus values of all its state variables. These are the 

primary emergent properties. The state variables include physical and chemical 

properties of the environment, and the depth of each computer agent, plus the 

biological state of its plankters, and the number of plankters in its sub-population.  

The virtual ecosystem also contains secondary emergent properties. These are 

computed on the fly during model integration; that is not essential, but it speeds up 

analysis later. The secondary properties include: 

• Audit trails for each computer agent. These combine the agent’s primary 

properties with its ambient environment (the values of the environmental fields at 

the agent’s precise location). 

• Demography of each population, classified by the biological state of its plankters 

(e.g. growth stage when alive, dead, and associated detritus including fæcal 

pellets). The demography includes (1) the number of plankters in the agent’s sub-

population, (2) the rate of increase due to reproduction, (3) the rate of decrease 

due to each cause of death (starvation, mortal disease, being eaten, etc.). These 

demographic properties are computed by polling all the agents of a given species. 

• Register for each species in the virtual ecosystem. This is a chronological record 

of successive births, deaths (classified by cause of death) and incidences of 

emigration or immigration. The register is the equivalent in virtual ecology of the 

parish register used as raw material by human demographers. When the 
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integration has been completed the register is analysed automatically to compute 

secondary demographic properties, notably time series of life expectancy for each 

species. 

A virtual ecosystem is designed to simulate the natural ecosystem realistically, so far 

as that is possible within the constraints of a limited set of species and (for the 

present) a one-dimensional mesoscosm. The aim is to provide a broad scope with 

many degrees of freedom in the freely emergent properties of the environment and 

plankton. That allows the investigator to identify and quantify ecological processes 

that theorists use to explain the bulk properties of the plankton ecosystem. These 

processes underlie the paradigms investigated in Part 3 (chapters 13-24). The canvas 

is wide enough for many such processes to co-exist in one virtual ecosystem. That 

makes the philosophy of virtual ecology different from that of process modelling, 

which is deliberately designed to have a narrow scope so that one ecological process 

emerges in isolation.  

1.9 Intra‐population variability 

(Lomnicki 1988), (Lomnicki 1992) has drawn attention to errors in classical 

population-based modelling because the demographic state variables cannot resolve 

intra-population variability. That is not a problem in virtual ecology, which simulates 

the life history of every plankter living in the ecosystem. Each phenotypic equation 

that describes the response of each plankter to its ambient environment includes a 

factor describing the plankter’s biological state. Plankters following different 

trajectories experience different histories of ambient environment, and therefore 

develop at different rates. It is normal to initialize the simulation with every plankter 

in a population having the same biological state. Turbulence displaces the agents 

randomly, producing significant differences in their trajectories. That soon leads to 

inter-agent variability in biological state. The phenotypic equations governing 

plankter behaviour (swimming speed, and procedures for foraging, migrating, etc.) all 

depend in part on the plankter’s biological state. Soon there develops inter-agent 

variability in behaviour. Although it was initialized by turbulence, the differences in 

behaviour add to the growing diversity of trajectories. So the generation of intra-

population variability in a virtual ecosystem is accelerated by positive feedback 
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between trajectory and biological state. Having started in the turbulent surface layer, 

that positive feedback continues in the non-turbulent thermocline.  

Intra-population variability is computed from the inter-agent variability, weighted by 

sub-population size. The existence of intra-population variability is easily revealed by 

plotting the audit trails of a selection of plankton agents. Woods (2005) illustrated 

emergent intra-population variability in a VE created with a simple food chain model 

comprising populations of diatoms, copepods and visual top predators. Chapter 10 

illustrates the phenomenon for a complex plankton community. Part 3 (Ch. 13-24) 

shows how intra-population diversity affects a number of familiar ecological 

phenomena. These results support Lomnicki’s theory about the importance of intra-

population variability in population ecology.  

1.10 Emergent demography and biofeedback 

Demography and biofeedback are the quintessential phenomena of ecology. Classical 

population ecology computes these properties with models that have demographic 

state variables (May 1977). VPE models are very different. They use phenotypic 

equations, which describe the biological functions of individual plankters. The state 

variables used in these equations define the plankter’s location and its biological 

condition, including its growth stage and biochemical properties. The demography of 

each plankton population is computed from the life histories of all its plankters. The 

impact of the plankton on the environment in their mesoscosm is also computed by 

summing the contributions of all the plankters. So demography and biofeedback are 

emergent diagnostic properties of a virtual ecosystem.  

1.10.1 No constraint on emergent properties 

VPE does not accept prescribed constraint on these emergent properties, or on any 

other endogenous property of the virtual ecosystem such as the depth of the mixed 

layer. That is not common practice in classical population modelling, where key 

environmental properties are often treated as exogenous.10 For example (Popova, 

Fasham et al. 1997)  deliberately fixed the annual cycle of mixed layer depth; treating 

it as an exogenous property. That caused the simulation to adjust to a strange attractor 
                                                        
10 The justification is an over enthusiastic application of Occam’s razor. 
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with unpredictable inter-annual variation. Avoiding constraints allows virtual 

ecosystems to adjust to a stable attractor with useful predictability (Ch.11). 

1.11 Information flow from DNA to Prediction 

 

Fig.1 The flow of information from left to right across the virtual ecology bridge 

 

The Bridge shown in fig.1 illustrates schematically the flow of information in virtual 

ecology from genome to ecological prediction. The information crossing the bridge 

starts on the left bank with molecular biology. This establishes the genome for each 

species of plankton, and the relationship between its genome and biological functions. 

Next comes the left-hand span of the bridge, where marine biologists perform 

experiments with plankton cultures to establish phenotypic equations. The library of 

phenotypic equations is stored on the island between the two spans of the bridge.  

The right-hand span represents the activities of virtual ecologists. They build a 

biological model with a few plankton species. Each species has biological functions 

described by phenotypic equations extracted from the library. Physical and chemical 

equations are added to complete the model. That is the endogenous component of the 

specification for a virtual ecosystem. The next step is to specify the exogenous 

component, which comprises information about the solar elevation, weather, ocean 

circulation and hydrology, and top predator equations. The endogenous and 

exogenous parts are combined in the specification for the virtual ecosystem, which is 

compiled to create a runtime code. Numerical integration produces a data set that 

comprises time series for the environment and the biological state of every plankter. 
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The demography and biofeedback are diagnosed from those raw data. Together they 

are the emergent properties of the simulation. Finally, on the right bank we see 

predictions derived from these emergent properties. Some predictions help advance 

the science of biological oceanography. Others serve applications in fisheries, 

pollution, health and climate. 

This schematic presentation emphasizes two important points made earlier. First, the 

scientific integrity of virtual plankton ecology rests on the biological primitive 

equations (phenotypic equations). And, second, the quintessential properties of the 

ecosystem, demography and biofeedback, are emergent properties of virtual ecology. 

These two properties are diagnosed from the primary emergent properties (values of 

the state variables of the model). They are not in themselves state variables: the 

specification for the virtual ecosystem contains no equations that have terms in 

demography or biofeedback. So the virtual ecosystem develops freely without prior 

assumption or constraint concerning those diagnostic properties. That is what 

distinguishes virtual ecology from population ecology, in which the state variables are 

demographic. We shall now comment further on that fundamental difference. 

1.12  Comparison with population‐based modelling 

The models of population ecology use demographic state variables. It is difficult to 

understand the logic of that practice, which has dominated theoretical population 

ecology since Lotka and Volterra (Murray 2003). Demography is a diagnostic 

property of an ecosystem, and virtual ecology treats it as such. It lies on the right hand 

side of the Bridge in fig.1. Population-based modelling uses inherently diagnostic 

properties as state variables in prognostic equations.  

Demography is an emergent diagnostic property of virtual ecosystems. We shall show 

later that it is highly volatile (Ch. 20). Emergent properties respond significantly to 

even quite small changes in the exogenous conditions that force the ecosystem. So 

empirical relationships between them have limited validity. They refer to the attractor 

of the virtual ecosystem when forced by a particular instance of exogenous forcing. 

This led (Sutherland 1996) to comment, “Population ecology has usually been based 

upon empirical relationships. This has the disadvantage that if the environment 

changes it is necessary to re-determine those relationships.” 
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1.12.1 Prediction when the forcing changes 
The predictions of classical population ecology use population-based models that 

contain empirical relationships (Sutherland 1996). The predictions rely on the method 

of induction (Bacon 1620), which has been challenged by (Popper 1972). The method 

fails when the exogenous conditions change making the ecosystem shift to a new 

attractor, which has different relationships between emergent properties. It is not 

logical to predict ecosystem response to climate change by models that depend on 

empirical relations established in the past. Similar problems affect financial and 

business modelling in time of rapid economic adjustment. For example, it is unwise to 

use empirical relationships established in the past to plan a shipping business in 

today’s changing global trade.  The method of induction gives useful predictions only 

in a stationary world. It’s strength lies in diagnosis, not in prognosis. Virtual ecology 

does not depend on empirical relationships. It accurately tracks the change in attractor 

as an ecosystem adjusts to changing forcing by exogenous factors including climate, 

release of ballast water containing alien species, changing top predators by fishing, 

accidental or purposeful fertilization of the ecosystem. 

1.12.2 Bayesian comparison of LEM and PBM 

Bayes’s theorem provides a way to assess the relative credibility of the two methods: 

LEM and PBM. The comparison focuses on a well-observed ecological phenomenon 

that each can simulate. The Bayesian approach assesses the credibility of each method 

in terms of two probabilities: prior and posterior. The prior is generic: it depends on 

the metamodel. The posterior is specific for a particular prediction: it depends on the 

observational evidence exploited by the Ecological Turing Test, which requires 

knowledge of the errors in the predictions (see §1.16 below). ETT alone satisfies the 

statistical needs of Bayes’s method. 

Table 1.12 compares significant features of the two methods that affect the prior and 

posterior probabilities. Let us start by comparing the prior probability for each 

method. Apart from the limited number of species, which is common to both 

methods, the comparison of features all favour predictions by Lagrangian Ensemble 

modelling over those by population-based modelling. In fact the list could have been 

extended to include all the principles of virtual plankton ecology. We conclude that 

we have a prior expectation that the LE metamodel is more likely to deliver 
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predictions that are useful for biological oceanography.  In other words, it is more fit 

for purpose.  

Turning to posterior probability, we find that the PBM strange attractor gives large 

errors to it’s predictions. That source of error is absent in the LEM. And the errors in 

LEM predictions due to internal noise in the computation are much smaller. They are 

estimated from the method of ensembles, which cannot be used in PBM. So it cannot 

be used meaningfully in verification by the Ecological Turing test. In passing we note 

that the ensemble method of estimating errors in predictions can be used in Monte 

Carlo modelling, which is a version of PBM, but it is not commonly used in 

biological oceanography. 

To conclude, Bayesian assessment shows that LEM prediction is more likely to be 

credible than PBM prediction of the same ecological phenomenon. 

Table 1.12   Comparison of predictions by the LE and PB methods 

Metamodel Lagrangian Ensemble Population-based 

Prior probability Primitive equations 

Intra-population variability 

Exogenous closure 

Stable attractor 

Limited number of species 

Diagnostic state variables 

- 

Endogenous closure 

Strange attractor  

Limited number of species 

Posterior probability 

Based on the 

Ecological Turing test 

Errors in predictions 
estimated from ensembles. 

Errors in predictions 
estimated from inter-
annual variability 
associated with the strange 
attractor.  
Note: 
Ensembles can be used to 
estimate errors in Monte 
Carlo modelling, but it is 
rare in biological 
oceanography. 
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1.13 Scientific analysis 

A virtual ecosystem is analysed as though it were a perfect set of observations 

collected from a natural ecosystem. Of course it differs from the latter in three 

important ways (Table 1.1). Its principal weaknesses are one-dimensionality and 

limited biodiversity. Its strength is completeness, extending to life histories of 

individual plankters.  

 

Table 1.1   Differences between real and virtual ecosystems 

Attribute Natural ecosystem Virtual ecosystem 

Dimensions Three One 

Biodiversity Thousands of species A few species 

Information Incomplete sampling Complete 

  

1.13.1 Completeness 

That completeness permits rigorous and comprehensive scientific analysis that can 

reveal all aspects of ecological phenomena occurring in the virtual ecosystem. 

Furthermore, the information contained in a virtual ecosystem permits unambiguous 

scientific explanation of what causes the phenomena. That explanation is rooted in the 

fundamental laws of marine physics, chemistry and biology, expressed through the 

model equations.   

However, despite that great strength, virtual ecology may have no relevance to 

biological oceanography if one-dimensionality and limited diversity divorce it from 

reality. That concern will be addressed in two ways. First, we compare the emergent 

properties of virtual ecosystem with observations of the same properties derived from 

observations of the natural ecosystem (see §1.16 and chapter 9).  And second, we see 

how well scientific analysis of virtual ecosystems reveals paradigms derived from 

observations and process modelling (Part 3). But first, we must learn how to analyse a 

virtual ecosystem.   

Scientific investigation of a virtual ecosystem proceeds on three levels:  
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1. Time series analysis,  
2. Identification and documentation of ecological phenomena,  

3. Scientific explanation of those time series and phenomena.  

1.13.2 Time series analysis 

Examples of time series analysis will be presented in chapter 10, which applies the 

method illustrated in (Woods 2005) to a more complex plankton community. 

Examples of emergent ecological phenomena are the spring bloom, or the transition 

from seasonal to permanent oligotrophy. They are the included in the Twelve 

paradigms of biological oceanography (Part 3; chapters 13-24).  

1.13.3 Scientific explanation 
Here we consider the third level of analysis: scientific explanation. The goal is to 

understand the temporal variations and ecological phenomena revealed in analysis at 

levels 1 & 2. In general, scientific explanation involves relating observed phenomena 

to the fundamental laws of nature.  In virtual ecology that translates into relating 

emergent phenomena revealed by level 1 & 2 analysis to the model equations that 

were integrated to produce the virtual ecosystem. These equations have a special 

status in virtual ecology. They are the primitive equations that represent the 

fundamental laws of marine physics, chemistry and biology. The equations are 

trustworthy because they were derived from reproducible experiments performed 

under controlled experiments in the laboratory. They provide the scientific bedrock of 

virtual ecology. The biological processes of individual plankters are described by 

phenotypic equations. So scientific explanation stops digging at the properties of the 

organism, its behaviour and physiology. Virtual ecology does not seek to explain 

ecological phenomena in terms of biological processes inside the cell.  

1.13.4 Audit trails 
A virtual ecosystem contains the life history of every biological particle in the virtual 

mesoscosm, including living plankters, the corpses of dead plankters and planktogenic 

detritus (fæcal pellets, etc.). Each life history is expressed as an audit trail comprising 

time series of the biochemical state of the particle, and its ambient environment. The 

audit trail is an emergent property of the virtual ecosystem that is directly controlled 

by the phenotypic equations. Audit trails are the micro properties of the virtual 
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ecosystem. Scientific explanation involves establishing the causal link between an 

emergent ecological phenomenon and audit trails.  

1.13.5 Biofeedback 
The link comes from biofeedback, whereby each particle modifies its ambient 

environment. Here are some examples. A phytoplankter affects the physical 

environment by growing chlorophyll, which absorbs photons; that changes not only 

the profile of solar irradiance but also the profile of turbulence. The phytoplankter 

also changes the chemical environment by taking up nutrients. A zooplankter changes 

the biological environment when it ingests prey, and changes the chemical 

environment by excretion and egestion. Bacteria attached to a fæcal pellet 

progressively release its chemicals into solution. Such influences on the physical, 

chemical and biological environment can easily be computed from the audit trails of 

individual plankters. 

Summing the actions of individual plankters reveals the total biofeedback. That 

allows us to explain the biological causes of macro changes in the environmental 

fields. Ecological phenomena are usually expressed in terms of those fields. 

Remember that the biological environment comprises fields of demographic variables 

for each species featured in the virtual mesocosm. The demography of each species 

includes the following emergent properties: its number density, the rate of increase 

due to reproduction, and the rate of reduction due to each causes of death, including 

starvation, being eaten, mortal disease, childbirth and old age. 

1.13.6 Summary 

To summarize, an ecological phenomenon is a bulk property. It is normally described 

in terms of the evolving fields of physical, chemical and biological environment. The 

plankton influence these fields by biofeedback. The magnitude of that biofeedback 

can be computed by statistical analysis of audit trails, which record the life histories 

of individual plankters. Each audit trail is controlled directly by the phenotypic 

equations in the model used to create the virtual ecosystem. So analysis of audit trails 

makes it possible to explain ecological phenomena in terms of the fundamental laws 

of marine physics, chemistry and biology contained in the model equations. 
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In conclusion, it is worth noting that a virtual ecosystem is complete. It contains all 

the information needed to explain ecological phenomena detected in it. There is no 

need to invoke exogenous hypotheses. The explanation in terms of audit trails is 

unambiguous (assuming the signal-to-noise ratio is fit for purpose, see §1.15). 

Scientific analysis in terms of audit trails can always eliminate the mystery from an 

unexpected phenomenon. Finally, we must remember that the scientific explanation 

occurs within the context of the virtual ecosystem, which has far fewer species than 

the natural ecosystem.  Nevertheless, the completeness and lack of ambiguity of 

virtual ecology are quite refreshing when compared with alternative methods 

commonly used for scientific explanation in plankton ecology. 

1.14 Prediction  

Every virtual ecosystem is a prediction about how the environment and plankton will 

change when the model equations are integrated under the constraints of the 

exogenous conditions. We classify predictions in three ways: forecasting, hindcasting 

and what-if? prediction. 

1.14.1 Forecasting 
A forecast looks into the future. The pre-requisite is a method of forecasting future 

development of the exogenous data used to force the simulation. For the atmospheric 

boundary conditions that method is weather forecasting. In practice weather forecasts 

are useful for about one week. That sets the limit of predictability in plankton 

ecology. 

1.14.2 Hindcasting 
Many ecological phenomena, including the twelve paradigms investigated in Part 3, 

have intrinsic time scales that are much longer than the one-week limit of forecasting. 

Investigating the annual growing season requires simulations lasting several years. 

Chapter 6 simulates natural selection occurring over decades. And chapter 25 explores 

the ecological response to climate change over one hundred years.  To predict how the 

ecosystem changes on these extended time scales we integrate the model with forcing 

by exogenous data collected in the past. This procedure is called hindcasting.  It 

predicts how the virtual ecosystem would have developed during some specified 
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period in the past. This procedure was made possible by the recent compilation of “re-

analysis” data sets that describe the synoptic state of the atmosphere every six hours 

during the last forty years (ERA40, see chapter 3). Integrating the model with 

atmospheric forcing described by these “re-analysis” data creates a hindcast virtual 

ecosystem.  

1.14.3 What‐if? prediction 

Operational oceanography supports planning of remedial actions to deal with marine 

hazards such as pollution, toxic blooms and plankton-borne human diseases. Most of 

the hazards have intrinsic time scales beyond the limits of predictability of weather 

and therefore of the plankton ecosystem. So planning depends on hindcasts. The 

strategy is to create virtual ecosystems that exhibit the hazard as an emergent 

property. The nature of this hazard is likely to depend on (1) the details of the model 

(including the model plankton community), and (2) on the exogenous forcing. 

Sensitivity studies can map how the emergent hazard varies as these endogenous and 

exogenous properties are altered. Having established the scope of the problem under 

natural conditions, the next step is to see how it would change when remedial action is 

taken. This involves introducing controlled events that modify the exogenous forcing. 

The aim of What-if? prediction is to discover the effectiveness of candidate remedial 

actions, and to establish which works best under different natural conditions. The 

result is a plan that can guide the choice of action when the hazard occurs, taking 

account of natural variations, such as the season and weather. 

1.14.4 Initialization 
The success of prediction depends on first establishing a balanced virtual ecosystem. 

Weather forecasting uses sophisticated mathematics for initialization (Lorenc 2002). 

An early attempt at weather forecasting by (Richardson 1922) failed because it 

omitted this crucial balancing step (Lynch 2006). It is equally important to achieve a 

balanced state in a virtual ecosystem before attempting to diagnose ecological 

processes occurring in it, or to make predictions. The feasibility of such balancing 

was first demonstrated by (Woods, Perilli et al. 2005). They showed that a virtual 

ecosystem spontaneously adjusts to a balanced state, a stable attractor, which is 

independent of initial biological conditions.  
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During the transition from (exogenous) initial state to (emergent) attractor the 

unbalanced components follow a damped oscillation. The oscillations of emergent 

properties can have large amplitude, so it is essential that no conclusion be drawn 

before they have decayed. The oscillations arise from interactions between biological 

production in the plankton populations represented in the virtual ecosystem, and their 

biofeedback to the environment.  

Most biological production occurs in a brief growing season. It can be thought of as 

an annual event. Adjustment to the attractor requires three or more such events.11 So 

the balanced state is achieved only after the virtual ecosystem has existed for several 

years. It is not possible to prevent the damped oscillation by basing initial conditions 

on observations of just one component of the ecosystem such as mixed layer 

chlorophyll estimated from ocean colour (Liu and Woods 2004). This important 

subject will be considered further in chapters 11, 12 and 30. 

1.15 Error analysis and control  

Virtual ecology proceeds by a series of numerical experiments; each designed to 

clarify some aspect of the plankton ecosystem, or to make a useful prediction. The 

emergent properties, including environmental fields and life histories of plankters, are 

the raw information of the simulation. Each synoptic value of an emergent property 

has an associated uncertainty. Using the terminology of information theory, we call 

the value “signal”, and the uncertainty “noise”. The quality of the emergent property 

is measured by the signal-to-noise ratio. It is pointless to proceed with detailed 

analysis of the virtual ecosystem if the raw emergent properties have a signal-to-noise 

ratio of less than ten. The numerical experiments of virtual ecology are designed to 

ensure that this criterion is achieved.  This involves three tasks.  

1. To identify the sources of error.  
2. To measure the signal-to-noise ratio.  

3. To control the error. 
Here we introduce them briefly. See Chapter 11 for more detail. We follow normal 

practice in classifying errors as either systematic or random. 

                                                        
11 It is reminiscent of the three shots in naval gunnery: overshoot, undershoot, hit target. 
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1.15.1 Systematic errors 

Systematic errors can arise in a virtual ecosystem from errors in the exogenous data 

used to create the model or for forcing. They have an impact on the emergent 

properties of the virtual ecosystem. The systematic error in a given emergent property 

caused by the uncertainty in a particular source value can be assessed by classical 

sensitivity analysis on a set of virtual ecosystems. Each simulation must last long 

enough for the virtual ecosystem to adjust to the new attractor. We noted earlier that 

virtual ecosystems are remarkably taut, so all emergent properties adjust to new 

values when an exogenous source value is changed.  

1.15.2 Random errors 

Random errors in a virtual ecosystem arise from the Monte Carlo simulation of 

plankter displacement by turbulence.  

1.15.3 Measuring signal‐to‐noise 

We use ensemble modelling to estimate the random errors in a virtual ecosystem. The 

ensemble comprises a set of instances of the same virtual ecosystem. The model and 

exogenous forcing are identical for each instance, with one exception. Each instance 

is initialized with a different seed value for the random number generator. So a 

different sequence of random numbers is used to compute successive turbulent 

displacements of the plankton agent. In each instance the agent follows a different 

trajectory, and therefore samples the environment differently and its plankters develop 

differently. The set of trajectories in each instance produces a slightly different 

demography for each population. Biofeedback creates a difference in the 

environment. The result is that, while each instance in the ensemble is an equally 

valid solution to the specified model and forcing, it settles on a slightly different 

attractor.  Statistical analysis reveals the ensemble mean values of the emergent 

properties, and the inter-instance variability. The former is the signal; the latter is the 

random noise due to turbulence. A worked example is presented in (Woods, Perilli et 

al. 2005); see also chapter 11. 

1.15.4 Controlling random errors 

Using more computer agents to represent the plankton reduces the random errors in a 

virtual ecosystem. It is good practice to ensure that the number of agents for each 
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biological state of a species does not fall below some prescribed number. This 

criterion can be extended usefully to specifying a minimum number of agents in each 

layer of the mesoscosm mesh. (Layers are typically one metre thick.) That is because 

the rate of ingestion by a predator depends on the concentration of prey in the layer 

where it resides. Experience suggests that the number of phytoplankton should be 

represented by at least 200 agents per layer. A lower number leads to unacceptable 

noise in all emergent properties.  

The initial conditions are specified to exceed that minimum acceptable number of 

agents per layer. However, as the integration proceeds, some agents have to be 

removed from the computation because all the plankters in their sub-populations have 

died or been eaten. In most virtual ecosystems there is a progressive decline in the 

number of agents representing each species.  The decline is faster in some layers. The 

noise in the system rises as the number of agents (i.e. the number of independent 

trajectories) declines. The rise in noise is countered by replacing the lost agents. That 

is achieved automatically by adding new agents whenever the number falls below the 

specified minimum.  As each new agent is added it receives half the plankters of the 

agent with the biggest sub-population. The plankton population remains unchanged 

by this transfer, but the number of agents, and therefore the number of independent 

trajectories is increased. 

Splitting the largest sub-populations has the added benefit of narrowing the range of 

sub-population sizes. That reduces the chance of a few exceptionally large sub-

populations biasing the estimate of demography. 

1.16 Comparison with observations 

Successful comparison with observations increases the credibility of a virtual 

ecosystem. Here we consider how that comparison can be made. The starting point is 

to recognize that there is uncertainty not only in an emergent property of a VE, but 

also in an observation of the same property. We need to establish the noise in each 

case before comparing the two signals. 
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1.16.1 Spatial resolution  
The comparison will be based on estimates of the average value of the chosen 

property in a 1°x1° box. That area is determined by the spatial resolution of the 

exogenous properties used to force the simulation (nutrients, weather, ocean 

circulation, top predators, etc.). It is also the spatial resolution of the NOAA 

climatology used to initialize the integration.  

1.16.2 Temporal resolution 

It is common practice to bin observations collected in the same month of the year 

(NOAA), or to make time series of repeated observations at monthly intervals 

(BATS). If they are collected during one year each monthly value may be treated as 

synoptic. In that case the simulation must be computed using external forcing by the 

actual weather in that year (e.g. from ERA40). On the other hand, the observations 

may be climatic values calculated by averaging data collected in the same month of 

the year over several years (e.g. NOAA Atlas). In that case the simulation can be 

based on climatic forcing (e.g. from ERA40 and NOAA nutrient climate). 

1.16.3 Strategy for comparison 

Normally the comparison is based on existing observations, so the modeller must try 

to create a virtual ecosystem that has the same space-time characteristics as the 

observations. Perhaps in the future the order will be reversed, and experimental data 

will be collected to test an existing prediction by a virtual ecosystem (see Ch.33). 

Either way, it is likely that there will be a mismatch between the space-time 

characteristics of observation and simulation. That will certainly be the case when 

both are designed to represent the average conditions during one month (or less) in a 

1°x1° box in the ocean. In that case the first task is to estimate the likely sampling 

errors in two signals. 

1.16.4 Choice of test variable 
We have noted earlier, that a virtual ecosystem is complete. It contains values of all 

the state variables in the computation, plus derived properties such as demography. 

Many of the state variables cannot be observed in nature: for example, the life 

histories of individual plankters. That limits the choice of variable for comparison to 



Virtual Plankton Ecology by Woods & Vallerga       - 43 - 

    

VIRTUAL PLANKTON ECOLOGY CH.1.docx           Last printed 27/08/2009 09:36 

field properties. These include synoptic profiles of environmental properties such as 

temperature, turbulence, chemical concentrations and demography.12  

The list of observed properties is often quite limited. The modeller must extract 

emergent properties that match the available observations. That may seem to limit the 

value of the comparison. But it is not the case if the virtual ecosystem is in a balanced 

state, i.e. on attractor. Then every property has a value that depends on the others. 

Any change in forcing that directly perturbs one property soon leads to adjustment of 

all the others, and the VE moves to a new attractor. This means we can choose to test 

the virtual ecosystem by comparing any of its properties with observation. This is 

why satellite ocean colour measurements of chlorophyll concentration in the surface 

layer can be used to test the virtual ecosystem as a whole (Liu 2003; Liu and Woods 

2004). 

1.16.5 Comparing the timing of events 

When the comparison is concerned with the timing of ecological events, the data 

comprise time series of such properties sampled at the chosen location. That is an 

eulerian time series based on samples of different bodies of water passing through the 

site. It does not describe temporal changes in the same plankton community. The 

water sampled on one day is likely to have drifted outside the 1°x1° box within a 

month or so. In Ch.12 we shall see how the modeller can synthesize such an eulerian 

time series from a large number of geographically-lagrangian simulations. 

1.16.6 The Ecological Turing Test 
(Woods 2002) proposed a procedure for comparing observations with model 

predictions. The aim is to see whether they could be representatives of the same 

ecosystem. The approach echoes Turing’s well-known paper in which he looked into 

the future when computing had become so sophisticated that one could not tell 

whether one was addressing a person or a computer. That day has now arrived in call 

centres that use computer-generated voices to answer customer queries. In our case 

the quest is to discover whether the computer simulation could be describing the same 

                                                        
12 A virtual ecosystem is not discredited because it cannot predict a particular observed 
property; for example species that are not featured in the model plankton community. The aim 
of verification is to identify weaknesses that might be corrected. 
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ecosystem as the observations. The real benefit comes when it does not. If there is a 

statistically significant gap between simulation and observations, then there must be 

something wrong with the simulation. That gap becomes the spur for improvement. 

How can one be sure that the difference between simulation and observation is 

statistically significant? It depends on the uncertainty in each. The test succeeds if we 

can be sure that despite the uncertainties, there is clear blue water between simulation 

and observation. We need to quantify those uncertainties in the context of the space-

time conditions discussed above. 

1.16.7 Uncertainty in the virtual ecosystem  

The estimate of signal is based on the one-dimensional simulation; it does not take 

account of patchiness caused by mesoscale turbulence. Furthermore, the model 

plankton community has a tiny fraction of the species living in the 1°x1° box.  The 

shortcomings in modelling patchiness and species diversity are potential causes of 

error. The VE contains no information about those errors; they are the unknown 

uncertainty. 

However we saw in §1.14 that we can use ensemble simulations to quantify the 

internal errors due to using far fewer computer agents than the number of plankters in 

the ecosystem. That is the known noise in the VE.  

1.16.8 Uncertainty in the observation 
Assuming that the measurement errors are negligible, the uncertainty in an observed 

property of the ecosystem lies in how well it represents the average value in the 

1°x1°x1 month box. Ideally there would be sufficient observations in that box reliably 

to estimate the mean value (the signal) and the standard deviation (the noise). That is 

easier for variables that can be sampled continuously from a towed vehicle, such as a 

batfish or Hardy-Longhurst continuous plankton recorder. However it is necessary to 

bear in mind the fact that mesoscale turbulence produces a very patchy ecosystem. A 

plankton net tow may sample a million litres of seawater, but that is only one part in 

ten billion of the water in the top kilometre of the 1°x1° box. What is the chance that 

the analysed concentrations of the top ten species of zooplankton deviate from the 

actual mean values in the box by, say 50%?  
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1.16.9 A case study 
(Liu and Woods 2004) used the Ecological Turing Test (ETT) to compare the date of 

the annual maximum concentration of chlorophyll in the mixed layer with SeaWifs 

observations of ocean colour. They calculated the signal and noise from the mean and 

standard deviation of a hundred SeaWifs pixels sampled in a 1°x1° box centred on 

27°W 40°N. The intra-box variability was attributed to mesoscale patchiness. Ocean 

colour was simulated by Monte Carlo optics with one billion photons in 64 

wavebands. The photons were scattered/absorbed by the plankton profile simulated in 

a virtual ecosystem. Ocean colour was computed from the photons that were scattered 

up towards the satellite, using the action spectrum of the satellite radiometer. The 

computation was repeated for each day of the year.  

The test was to compare the dates of annual maximum surface chlorophyll 

concentration. The result was a statistically significant difference. The virtual 

ecosystem was then upgraded in two ways. First by switching from one population of 

diatoms to an allometric set of three, which exhibited a seasonal succession (Nogueira 

et al 2005).13 The second upgrade was to use a better algorithm for cloud radiation 

interaction. The result of these two changes, one endogenous the other exogenous, 

was to close the gap between observation and simulation. That exploited all the 

information that SeaWifs had to offer for this test. 

1.16.10 The value of comparing virtual ecosystems with observations 

Historically modellers have used observations in two ways: 

1. To tune model parameters. 

2. To verify a model. Actually to find its deficiencies. 

The first use is not applicable to virtual plankton ecology, which is based on primitive 

equations. The values of parameters are determined from experiments. It is 

inappropriate to change them to fit emergent properties to observations. Furthermore, 

tuning is unwise in general, because it is valid only for a very limited set of 
                                                        
13 The three species were all diatoms, which contributed strongly to the mixed layer 
chlorophyll during the spring bloom off the Azores. Adding other species, such as 
dinoflagellates, which concentrate in the deep chlorophyll maximum, would have little impact 
on the comparison. The annual maximum of mixed layer chlorophyll is an example of a 
phenomenon that is relatively insensitive to species diversity. See the discussion at §1.2.4 
above). 



Virtual Plankton Ecology by Woods & Vallerga       - 46 - 

    

VIRTUAL PLANKTON ECOLOGY CH.1.docx           Last printed 27/08/2009 09:36 

circumstances. And it squanders scarce observations that can better be used for 

verification. It is much better to use observations to eliminate the shortcomings of the 

model and the exogenous parametrizations used to force it. We have seen in the case 

study above that verification and error correction quickly strips the value from 

observations.  

The specification of a virtual ecosystem leaves open many details that can be adjusted 

without compromising the fundamental integrity that comes from using primitive 

equations. The case study quoted above highlighted two adjustable features. The first 

was the choice of species in the model plankton community. The second was the 

algorithm used to compute the influence of clouds on insolation entering the ocean. 

We saw that adjusting these, within a credible range, led to a better match between 

predicted and observed dates of the annual maximum surface chlorophyll 

concentration. That represents an effective use of observations to improve the virtual 

ecosystem.  

1.17 The Virtual Ecology Workbench 

The computer programs used to create virtual ecosystems are complex. They are 

difficult to write and to maintain. A typical investigation requires a sequence of 

virtual ecosystems each having a slightly different specification. Each new version 

needs to be tested and debugged before using. This can be time-consuming for such 

complex programs. A full-time computer programmer is needed to support such 

investigations. Or rather it used to be when the programming was done by hand. That 

has now been replaced by a software tool, the Virtual Ecology Workbench (VEW), 

which automates the programming and routine analysis of virtual ecosystems. The 

user enters data and equations/rules through the graphical interface. When the 

specification of a new virtual ecosystem is complete, the VEW automatically writes 

executable code in Java, which can run on any personal computer that has a Java 

compiler. (They almost all do.) Using the VEW reduces the turnaround time for 

computing by a factor of one hundred, as compared with programming by hand. The 

design and use of the VEW is described in Ch.7. The user handbook is included in the 

DVD. 
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1.18 Summary 

This chapter has opened discussion on two issues in modelling the plankton 

ecosystem. The first concerns complexity, the second best practice.  

1.18.1 Complexity 

We started by comparing the computational complexity of a typical virtual ecosystem 

with that of the natural ecosystem, focusing on three properties: environment, 

demography, and biodiversity. This led to the following conclusions: 

• The environment is very similar to the natural ecosystem, with one exception. 

Current practice concentrates on one-dimensional simulations, which neglect 

mesoscale turbulence. As the result the environment in a VE is much less complex 

than in nature. Upgrading to three-dimensional virtual ecosystems will eliminate 

this shortcoming.  The complexity of the environment will then be comparable in 

simulation and nature.   

• Demography is computed from the life histories of individual plankters. The 

virtual ecosystem uses agent-based modelling to simulate the plankton as 

individuals. The limited power of computers restricts the number of agents to a 

tiny fraction of the number of plankters. So the virtual ecosystem has many fewer 

independent trajectories than the natural ecosystem. In that sense it is much less 

complex. However, demography is computed from the statistics of the agents’ 

properties. The errors are acceptably low provided the simulation contains about 

one million agents. That also applies to two other important ecological properties, 

biofeedback and intra-population variability. For all these properties diagnosed 

from agent data, the virtual and natural ecosystems have similar complexity. 

• A virtual ecosystem has far fewer species than the natural ecosystem. There is no 

way to eliminate this lack of complexity. So virtual ecosystems might provide a 

misleading guide to the natural ecosystem. However many ecological phenomena 

are insensitive to species diversity. Focusing on them, the strategy is to design 

models that contain the species that most affect the phenomenon, and to 

parametrize the others by functional groups. The magnitude of the error can be 

assessed by sensitivity studies involving models that have different plankton 

communities. The credibility of virtual plankton ecology ultimately rests on 
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demonstrating that it performs well in simulating ecological phenomena that have 

been documented well by observations. The comparison uses the Ecological 

Turing Test. 

To summarize, virtual ecosystems are computationally complex, more so than 

simulations created by population-based modelling, but less so than natural ecosystem 

because they have many fewer species. Some ecological phenomena are insensitive to 

that lack of species diversity. 

1.18.2 Best modelling practice 

The probability of success in simulating the plankton ecosystem is improved by 

adopting best modelling practice. That was the second issue addressed in this chapter. 

The subject is so big that it will occupy the next eleven chapters of this book. Chapter 

1 briefly introduced fifteen topics, which we call the principles of virtual plankton 

ecology.  The aim was to show the scope of the subject before getting down to detail. 

The starting point was primitive equation modelling, which has proved successful in 

simulating other complex systems. The biological primitive equations are phenotypic: 

they describe the functions of individual plankters. That led to individual based 

modelling, and then to the Lagrangian Ensemble metamodel, which makes it possible 

to compute demography and biofeedback as emergent properties. Mapping the 

information flow from DNA to ecological prediction revealed the fundamental 

difference between this practice and population-based modelling. The focus then 

turned to downstream activities: scientific analysis and prediction, assessing and 

controlling errors, and comparison with observations. The last topic introduced the 

Virtual Ecology Workbench, which automates the main operations in virtual ecology, 

thereby eliminating the need for computer programmers and experts in model 

engineering for day-to-day research.  

Taken together, these principles provide the scientific integrity that is essential for 

creating trustworthy simulations of the plankton ecosystem. They ensure that 

emergent properties have sound foundations in the laws of marine physics, chemistry 

and biology; that the virtual ecosystem is on a stable attractor before we draw 

conclusions from it; and that the signal-to-noise ratios of emergent properties are fit 

for purpose. 
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1.18.3 Virtual Experiments  

One last point: quite apart from its scientific value, virtual plankton ecology is great 

fun. The Virtual Ecology Workbench takes away the chores associated with budgeting 

and particle management, programming and data visualization. VEW Builder makes it 

easy to create a new model with a selection of plankton species, plus functional 

groups for those not represented. You can run the VEW on your laptop computer, but 

the integration really flies if you use a quad-core desktop. Integration took less than 

an hour per simulated year for the six-species virtual ecosystem in Chapter 10. The 

VEW automatically documents each VE for future reference. This file is too large to 

publish in the traditional way as an appendix to a scientific paper, but it can be made 

available on the web. See examples on www.virtualecology.org. The documentation 

of the Ch.10 VE is included in this book’s DVD. 

One is likely to spend one hundred times longer exploring a virtual ecosystem than 

creating it. So the VEW contains a powerful tool VEW Analyser to speed up selection 

and plotting of emergent properties.  When you load a new virtual ecosystem VEW 

Analyser automatically configures the graphical user interface to display the time 

series of its emergent properties tagged by geographical location, date and time. The 

properties include environmental fields, demography and an audit trail for every 

plankton agent. The graphical interface includes pull-down lists that make it easy to 

select emergent properties with defined sampling in space and time. Analysing a 

scientific phenomenon involves a sequence of data selections. At each step in that 

analysis trail VEW Analyser automatically creates a file with the selected data, and 

plots them as a time series, profile, space-time contour plot, or higher order products 

such as a Poincaré map. The most fascinating aspect of scientific analysis comes from 

audit trails, which show how individual plankters are contributing to the phenomenon. 

(Yes, one starts to think in the present tense when exploring a virtual ecosystem.) 

The images created on the screen by VEW Analyser provide vivid insights into how 

the virtual ecosystem is working. One soon becomes immersed in its virtual world. It 

seems very real. And if the virtual experiment (VEx) was carefully designed it 

provides a realistic surrogate of nature. So what one discovers has a direct bearing on 

scientific issues in biological oceanography. That is the joy of Virtual Experiments.  
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1.18.4 Conclusion 
We have chipped away at the objections commonly given for rejecting mathematical 

simulation as a scientific contribution to biological oceanography.  

1. The first step is to use best modelling practice. We have shown how that is 

achieved by applying the principles of virtual plankton ecology. In passing we 

noted that population-based modelling is less satisfactory for three reasons: it 

neglects intra-population variability, and more importantly it uses intrinsically 

diagnostic properties of the ecosystem as state variables in prognostic models, 

furthermore it depends on empirical relationships that need to be revised if the 

exogenous conditions change.  

2. Today’s virtual ecosystems are one-dimensional and cannot therefore simulate 

mesoscale turbulence, which causes patchiness in the plankton ecosystem. 

Introducing three-dimensional virtual ecosystems will remove that objection.  

3. The final objection is common to all methods of modelling the plankton 

ecosystem. It is that the model plankton community has very few species 

compared with the ocean. That objection is countered by demonstrating that 

most ecological phenomena simulated in virtual ecosystems are not 

particularly sensitive to such lack of species diversity. A modest increase in 

the number of species is often sufficient to close the gap between prediction 

and observation. The ecological phenomenon can then safely be analysed in 

the virtual ecosystem. That produces improved understanding of the 

phenomenon, which is the contribution virtual ecology makes to biological 

oceanography. 

The VEW provides the software technology to exploit this potential effectively. 
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