
Creating Individual Based Models of the
Plankton Ecosystem

Wes Hinsley1, Tony Field1, and John Woods2

1 Imperial College Department of Computing, London, UK
w.hinsley@imperial.ac.uk

2 Imperial College Department of Earth Science and Engineering, London, UK

Abstract. The Virtual Ecology Workbench (VEW) is a suite of utili-
ties for creating, executing and analysing biological models of the ocean.
At its core is a mathematical language allowing individual plankters to
be modelled using equations from laboratory experiments. The language
uses conventional mathematical assignments and seven plankton-specific
functions. A model consists of a number of different plankton species,
each with different behaviour. The compiler produces Java classes which
when executed perform a timestep-based, agent-based simulation. Each
agent is a Lagrangian Ensemble agent [13] representing a dynamic num-
ber of individuals, (a sub-population), that follow the same trajectory.
The agents are simulated in a virtual water column that can be anchored,
or can drift with ocean currents. This paper shows how the language al-
lows biological oceanographers to create models without the need of con-
ventional programming, the benefits of this approach and some examples
of the type of scientific experiments made possible.

1 Introduction

There are two main methods for modelling plankton. Population-based modelling
involves computing the size of a population of plankters from statistics and rules
which apply to whole populations. Such models, first established by Lotka and
Volterra [8], are computationally cheap and have thus been until recently the
predominant method [1,4]. Alternatively individual-based modelling aims to de-
scribe the behaviour of an individual plankter and allow the properties of the
population to emerge by integration. Popova et al used a population-based model
to show the ocean ecosystem exhibits chaotic behaviour [11], whereas Woods
et al with a comparable individual-based model produced stable results [14].
Lomnicki has argued that intra-population variation, unique to individual-based
modelling, is the reason the two approaches may give different results. However
since individual-based models are harder to code and computationally more ex-
pensive, population-based modelling has remained the preferred approach.

The Virtual Ecology Workbench (VEW) is designed to address the difficulties
in creating individual-based models. The core of the VEW is the Planktonica
language and the compiler which translates equations familiar to a biological
oceanographer into Java, thus giving the oceanographer a familiar interface lan-
guage with which to build models.

Y. Shi et al. (Eds.): ICCS 2007, Part I, LNCS 4487, pp. 111–118, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



112 W.R. Hinsley, A.J. Field, and J.D. Woods

2 Creating Models

2.1 Functional Groups and States

A model consists of any number of functional groups which the user creates.
A functional group is defined as a set of plankters that behave similarly. They
may vary dynamically in terms of their position, volume, mass and any other
user-defined property. They may also have parameters that are constant for all
plankters of that type. The user creates a set of functions for each functional
group. Each function describes some aspect of a plankter’s behaviour in response
to its biological properties and the properties of its local (ambient) environment.
A function can have any number of rules which can be thought of as mathemat-
ical statements. These rules may be assignments to variables or calls to one of
seven special-purpose functions, which may be executed conditionally or uncon-
ditionally.

Two important points must be noted. Firstly when writing functions and
rules, the user is considering a single plankter and not a population, nor an
agent, even though the simulation is agent-based. Secondly rules are executed
each timestep and the user must ensure that the units of time in their rules are
appropriate.

A functional group has at least one state, possibly many. These are usually
used to represent stages in a life cycle. A plankter exists in one of its states at any
time; in each state a subset of its functions are switched on and the remainder
switched off.

2.2 The Water Column

The simulation is conducted in a virtual water column stratified into one-metre
layers. The user can create any number of chemicals and for each, a concentration
variable is automatically created in each layer. Chemicals can have pigmenta-
tion properties and when a plankter contains a quantity of such a pigment, the
transfer of light and temperature through the water containing that plankter
will be affected (called bio-optic feedback).

The physical properties of each layer are generated by a built in physics mod-
ule, which calculates the irradiance (based on Morel [9]), temperature, salinity
and density of water throughout the column. A separate layer structure offering
higher resolution in the top metre is used, since this is where the irradiance and
temperature change most rapidly with respect to depth.

The physics module also calculates the depth of the turbocline. Above this
depth, the water can be assumed to be mixed in each half-hour timestep. The
chemicals in solution above the turboclnie are therefore mixed each timestep.
Below the turbocline, laminar flow may be assumed. Note that the plankters are
not automatically mixed as part of the physics, to allow the user to make some
plankters more buoyant than others.



Creating Individual Based Models of the Plankton Ecosystem 113

2.3 Variables and Constants

The user can create three types of variable. The first is a ‘biological parameter’
which is a constant for all plankters of a functional group. The second is a
‘biological property’ which defines a property of an individual at a given time.
It can be assigned a new value in each timestep. Some biological properties
are created automatically such as a plankter’s depth and internal pool for each
chemical the user has created. It also inherits a read-only ‘incoming pool’ for each
chemical which provides the amount of chemical gained in the previous timestep
by uptake from the environment, and ingestion of other plankters. Thirdly the
user can for convenience create intermediate variables for breaking up a complex
equation into parts, or for sharing an intermediate value between other rules or
functions.

Other variables may be read by the user but not written. These include am-
bient physical properties (temperature and irradiance for example), ambient
chemical concentrations for each chemical the user has created, and ambient
biological properties - the local concentration of any functional group. Addition-
ally, the timestep size in hours and the depth of the turbocline can be read. The
latter is needed in order to write motion equations, since it is necessary to know
whether the plankter is above or below the turbocline.

2.4 Special-Purpose Functions

Along with basic assignments, there are seven special-purpose functions defined
below which facilitate interactions between the plankter and its environment.

Uptake(chemical, amount) and Release(chemical, amount). The uptake
call is used when the plankter attempts to absorb chemical from its ambient
environment. Requests are proportionally issued over each layer that the plankter
visits on the journey between the current timestep and the next, scaled by how
long it spends in each layer (or part thereof). In cases where the amount of
chemical available is insufficient (since many plankters may try to uptake in the
same layer), all the requests will be proportionally scaled down so that they
sum to the available amount. The actual amount gained by an individual will
be available in its ‘chemical-gained’ biological property for that chemical. The
release call performs the opposite; the specified chemical is released into the
environment proportionally in each layer the plankter moves through.

Divide(x) and Create(x, state, [assignments]). These two functions mo-
del cell division and reproduction respectively. The two are treated separately
because cell division offers a useful optimisation, namely that having divided
into two, the two parts will be identical. When the user writes divide(x), they
are stating that the plankter should divide into ‘x’ indentical parts. Since cell di-
visions among diatoms are extremely common in Spring, creating new a plankter
agent for each division would be costly on memory. Instead the sub-population
size of the agent is multiplied by ‘x’.



114 W.R. Hinsley, A.J. Field, and J.D. Woods

The create function by contrast creates a new agent with its own trajectory.
The agent represents a number of plankters with the same biological properties,
but they may differ from those of the parent. The number of offspring is defined
by ‘x’; this is the number of individuals that the new agent will represent. The
state of the offspring is defined by ‘state’ and a list of assignments may be
provided to initialise the biological properties of the offspring.

Change(state) and Pchange(p,state). Two methods of changing state are
provided. The ‘change’ function causes an unconditional change from the current
state to a newly specified one. When the user writes the ‘pchange’ function they
are stating there is a probability ‘p’ that the plankter should change into its new
state. Planktonica interprets this as splitting the agent into two, one representing
the proportion ‘p’ that did change and the remainder are left in their original state.

Ingest(foods, rates, thresholds). The final function call is for plankters that
perform ingestion. Any number of foods may be selected, where a food is defined
by its functional group and stage. Each food may be ingested at a different ‘rate’,
in individuals per second, provided that the concentration of prey is above a
specified ‘threshold’. More specifically, the type of food is specified by ‘species’
and stage; species will be defined in the following section.

Like the uptake call, requests are made in each layer that the plankter will
pass through in the next timestep. If there is insufficient food of any of the types,
the request for that food-type will be scaled down. The sub-population sizes of
the prey that were ingested will be reduced accordingly and the chemicals in the
pools of the ingested plankters will be transferred to the chemical-gain biological
property of the predator. A further system variable is available called ‘ingested’,
which returns the number of individuals of each food-type that were ingested.

3 Further Specification

3.1 Species

Having created the functional groups and chemicals the user creates at least one
species of each functional group. A species is a parameterisation of a functional
group in which a value is given for each of the biological parameters for that
functional group. A common example is to create a number of size-based vari-
ations of a functional group so that the species all exhibit the same behaviour,
but with different size-dependent rates. Having defined the species the user can
now specify the foods, rates and thresholds for each of the ingestion calls they
may have made in their model.

3.2 Scenario

The scenario defines the input data for the simulation. This includes the starting
time and duration of the simulation and the track that the water column takes.



Creating Individual Based Models of the Plankton Ecosystem 115

The column may be anchored at a location or it may drift in response to ocean
currents, supplied by OCCAM [10]. Data is created for each timestep, providing
the astronomical and climatological values required by the physics code. This
data can be taken from Bunker [2] or the ERA40 data set [3]. The physical
and chemical profiles of the water column also must be initialised. For some
chemicals, data is available from the Levitus World Atlas [6].

3.3 Agent Initialisation and Management

Initial distributions of plankters are then configured; any number of sets of plank-
ters may be distributed at a given density with a given set of initial values for
their biological properties and an initial state. Agent management rules can then
be specified which allow the user to control the compromise between demographic
noise and computational cost. Two rule types are available. The first allows split-
ting of the largest agents (that is, agents with the largest sub-population size),
should the number of agents of a given species and stage fall below a given limit.
The second allows merging of the smallest agents if the number of agents exceeds
a given limit. Both of these can be specified to apply to each one-metre layer of
the column, or to the column as a whole.

3.4 Logging Options

The output of the simulation can include water column properties such as the to-
tal number of plankters of each species and stage, or field data can be recorded
layer-by-layer for all or part of the column, such as concentrations of plank-
ters, concentrations of chemical (in solution or particulate form), and physical
properties such as temperature and irradiance. Audit trails, which are values of
the biological properties of individual plankters and their ambient environmen-
tal properties may be plotted. These are unique to individual-based modelling,
and not easily observable in nature. Additionally, demographic statistics can be
plotted which show how many plankters changed state due to a particular func-
tion and the location of those plankters in the column. Finally, for debugging
purposes the local variables the user created can be logged.

4 Compilation and Execution

A single XML file stores the model and all the associated specification infor-
mation. The compiler then produces Java classes from the specification file, for
each functional group and chemical. These are then compiled by the standard
Java compiler along with a set of kernel classes which drive the simulation. The
climate data specified in the scenario is extracted from the available datasets and
written to binary files. All the files are then packaged into a single executable
JAR file.

Execution can be done silently, or alternatively a utility called ‘LiveSim’ is
provided for running the simulation step by step and inspecting every property



116 W.R. Hinsley, A.J. Field, and J.D. Woods

of the system visually. This is useful for debugging models and as an interactive
teaching tool to explain the behaviour of plankters. The VEW contains a docu-
mentation tool which writes all the information necessary to recreate the model
in an indexed HTML format.

5 Applications and Example Results

The modelling language was designed with reference to the WB model [13], an
individual based containing Nitrogen, Phytoplankton, Zooplankton and Detritus
(NPZD). The VEW has been recently used to develop the Lagrangian Ensemble
Recruitment Model (LERM), which includes diatoms, copepods and squid larvae
in an environment with nitrogen and silicate [12].

Below are some of the typical plots available using the VEW’s own Analyser
package, taken from a simulation of the WB model [13]. Figure 1(a) shows the
yearly cycle of diatoms and copepods. The diatoms bloom in Spring until they
run out of nutrient. The copepods then grow by feeding on the diatoms until they
can reproduce. The parent copepods then die of old age and the next generation
will have to wait until the following year until there is enough food for them to
grow to reproductive size.

Figure 1(b) is an example plot of field data. It shows the nitrogen concentra-
tion varying over depth and time, with the turbocline marked. Through Summer
nitrogen near the surface is depleted by the diatoms, which are nitrogen-limited.
In Autumn, the turbocline descends and nitrogen from deeper water is mixed
above the turbocline. Copepods excrete nitrogen and dead diatoms, dead cope-
pods and copepod pellets remineralise nitrogen.

(a) (b)

Fig. 1. (a): Diatom and Copepod yearly cycles. (b): Nitrogen throughout the column
at midnight with turbocline.



Creating Individual Based Models of the Plankton Ecosystem 117

Figure 2 shows the unique characteristic of individual-based modelling. A
single diatom’s energy pool is plotted along with its depth. The more intense the
diatom’s ambient irradiance, the higher its energy gain by photosynthesis will be,
whereas in relatively dark water, or at night, respiration losses outweigh energy
gains. Note also the effect of the turbocline on the depth of the plankter; below
the turbocline it sinks, whereas above the turbocline it is randomly displaced.

Fig. 2. Energy of an individual diatom

6 Conclusion

The Virtual Ecology Workbench with the Planktonica language at its core of-
fers the best known method for creating individual-based plankton models. The
equations for the WB model above can be shown succinctly in a few pages of
equations, whereas conventional methods were only able to produce raw com-
puting source code. The latter gave rise to inherent problems of maintainability,
requiring a mediator between the biological modeller and the simulation code,
as few biological modellers are skilled programmers.

While it is necessary for the modeller to familiarise themselves with the special
function calls and to take the necessary care in ensuring their equations are
correct and input correctly to the system, the amount of pure computing skill
required has been significantly reduced.

While individual-based models offer advantages over population-based models
[7,14], the difficulty in constructing such simulations has limited research into the
precise nature of the them. The VEW now offers a convenient method for build-
ing these simulations, and investigating more thoroughly the issues regarding
these two approaches to modelling plankton.



118 W.R. Hinsley, A.J. Field, and J.D. Woods

References

1. Anderson, T.R., Pondaven, P.: Non-redfield carbon and nitrogen cycling in the
Sargasso Sea: pelagic imbalances and export flux. Deep-Sea Research I 50 (2003)
573–591

2. The Bunker Climate Atlas of the North Atlantic Ocean. http://dss.ucar.edu/
datasets/ds209.2/

3. The ERA-40 Re-analysis Dataset. http://www.ecmwf.int/research/era/
4. Fasham M.J.R., Ducklow H.W., McKelvie S.M.: A nitrogen-based model of plank-

ton dynamics in the oceanic mixed layer. Journal of Marine Research 48 (1990)
591–639

5. Hinsley W.: Planktonica: A System for Doing Biological Oceanography by Com-
puter. PhD Thesis, Imperial College Department of Computing. (2005)

6. The Levitus World Ocean Atlas. http://www.cdc.noaa.gov/cdc/data.nodc.woa98.
html

7. Lomnicki, A.: Individual-based models and the individual-based approach to pop-
ulation ecology. Ecological Modelling 115 (1999) 191–198

8. Lotka, A.J.: Elements of physical biology. Baltimore: Williams & Wilkins co. (1925)
9. Morel, A.: Optical modelling of the upper ocean in relation to its biogenous matter

content (case 1 water). Journal of Geophysical Research 93(c9), 10749
10. The OCCAM global ocean model. http://www.noc.soton.ac.uk/JRD/OCCAM/
11. Popova E.E., Fasham M.J.R., Osipov A.V.O., Ryabchenko V.A.: Chaotic behaviour

of an ocean ecosystem model under seasonal external forcing. Journal of Plankton
Research 19:10 (1997) 1495–1515

12. Sinerchia M.: Testing Fisheries Recruitment Models. Ph.D in preparation, Imperial
College Department of Earth Sciences and Engineering. (2006)

13. Woods, J.D.: The Lagrangian Ensemble metamodel for simulation plankton ecosys-
tems. Progress in Oceanography 78 (2005) 84–159

14. Woods, J.D., Perilli, A., Barkmann, W.: Stability and predictability of a virtual
plankton ecosystem created with an individual-based model. Progress in Oceanog-
raphy 67 (2005) 43-83

http://dss.ucar.edu/datasets/ds209.2/
http://dss.ucar.edu/datasets/ds209.2/
http://www.cdc.noaa.gov/cdc/data.nodc.woa98.html
http://www.cdc.noaa.gov/cdc/data.nodc.woa98.html

	Introduction
	Creating Models
	Functional Groups and States
	The Water Column
	Variables and Constants
	Special-Purpose Functions

	Further Specification
	Species
	Scenario
	Agent Initialisation and Management
	Logging Options

	Compilation and Execution
	Applications and Example Results
	Conclusion

