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Abstract

One of the grand challenges in biological oceanography is the ability to predict the

ocean plankton ecosystem using mathematical models. Most ecosystem models to date

have been population-based and are defined by sets of coupled differential equations

and solved as such. More recently the advent of high-powered computers has made

individual-based models feasible, where agents represent individuals or sub-populations,

each obeying a set of primitive equations or rules. Crucially, individual-based models

have been shown to be stable over a wide range of parameters and avoid the chaotic

instability exhibited by population-based models.

This thesis focuses on the software engineering issues associated with developing

individual-based models of the plankton ecosystem. We present Planktonica, a problem-

solving environment distinguishing the notions of metamodel, which abstracts the in-

tegration method and underlying physics, and object model, which defines a specific

ecosystem model and chemical environment. We aim to reduce the modelling task to

specifying the behaviour of individual organisms and their interactions with their am-

bient chemical environment using primitive rules. This enables complex models to be

built by biological oceanographers, rather than by specialist programmers.

We describe the philosophy underlying Planktonica and document the implementa-

tion of a modelling framework that supports it. We develop a mathematical modelling

language for describing primitive rules for biology and chemistry - essentially the lan-

guage of mathematics augmented with functions that interface to the metamodel. The

resulting system is evaluated by reconstructing existing individual-based models, and

new models constructed entirely through Planktonica that demonstrate the system’s

ability to facilitate new science.
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Chapter 1

Introduction

This thesis is concerned with conducting mathematical simulations of plankton in a vir-

tual ocean ecosystem. It contributes a modelling language for specifying the behaviour

of plankton, and delivers suitable software tools for the creation and execution of com-

puter simulations of models. These tools, combined with a set of applications from other

sources, form the Virtual Ecology Workbench (VEW), a comprehensive suite of tools

for creating simulations of biological oceanography, and analysing their results with the

purpose of exposing the emergent properties of the models created.

1.1 Biological Oceanography

Biological oceanography is the study of flora and fauna in the ocean; this thesis is

focussed on plankton, which are defined by Woods to be organisms that cannot usefully

change their ambient environment by moving horizontally, although they may do so by

moving vertically [56]. Figure 1.1, also reproduced from Woods [56], shows a hierarchy

of the plankton community, in which plankton are separated into six classes: bacteria,

viruses, phytoplankton, herbivores, carnivores, and higher predators such as fish larvae.

Many species and varieties of plankton exist, however many groups of plankton also

exhibit the same basic physiology and behaviour. They are separated into functional

groups, defined by a unique combination of phenotypic equations, where phenotypic

11
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Figure 1.1: The Plankton Community (Woods, March 2005)



CHAPTER 1. INTRODUCTION 13

is defined as the observable physical or biochemical characteristics, as determined by

genetic makeup and environmental influences. A species is a parameterisation of a

functional group, and a variety is a specialisation of a species, defining a relatively small

change to one or more parameters. Additionally plankton in a functional group may

exhibit different behaviour in different stages of their growth, or in different seasons.

The ocean food-web defines the complex pattern of predation, where larger creatures

feed on smaller, often with preferences for certain species and/or plankton of certain

size. Phytoplankton are organisms that depend on sunlight and on nutrients to fuel

growth by cell division. They perform photosynthesis, by which chlorophyll within the

plankton affects the dissipation of light through the water. Thus, phytoplankton cause

a bio-optical feedback on their environment. Biochemical feedback also arises from the

transfers of chemical between plankton and their environment.

1.2 Motivation

More than half of the biological production on the planet is caused by plankton. Phy-

toplankton photosynthesis is responsible for about 70% of the oxygen production on

the planet. Plankton play a significant role in determining the earth’s climate, particu-

larly in the regulation of atmospheric carbon dioxide. Understanding the beneficial and

harmful effects of man’s influence on the oceans [13], and the influence the oceans can

have on man [45], is one of the most challenging open scientific problems.

For example, consider how the effect of certain industrial processes on the ocean

ecosystem [13], or the spreading of harmful diseases such as cholera [45] could be pre-

dicted. In order to make such predictions, we must improve our understanding of the

most significant end of the food chain: the population dynamics of plankton.

Investigations in biological oceanography can be undertaken by observation, or by

mathematical simulation. Observation involves sampling at sea, producing data within

the limits of instrumental and sampling error. However, such observations can only be

done on a small scale, and the observer is required to know the context of the observations
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being taken. For example, copepods swim downwards during the day and upwards at

night, so measurements of copepod concentration must be made at an appropriate depth

for the time of day. Additionally, the ocean ecosystem is complex enough that simple

deduction from observations may not accurately or fully explain the processes being

observed.

Mathematical simulation involves building models of processes in the ocean, using

computers to integrate the model over time. Various types of modelling approaches (or

metamodels) exist, some of which involve writing equations to describe whole popula-

tions, others involve rules that describe the behaviour of individual plants and animals.

Creating such models is challenging, since our understanding of the ocean is incomplete.

However, we do have a good understanding of some biological processes, including the

primitive behaviour of individual plankters, based upon laboratory experiments.

With this information, it is possible to create a virtual environment with customised

conditions, to simulate a number of plankton, and to observe the emergent properties of

the plankton population over time. This enables any number of hypothetical scenarios

to be created. Of course, the validity of results obtained from such experiments depends

on the model of plankton behaviour being correct.

This thesis focuses on the creation of mathematical simulations of ocean life, us-

ing computer science to allow biological oceanographers to build models of the ocean

ecosystem.

1.3 Simulation

The biological study of plankton, both plant and animal has a very long history, and the

physiology and behaviour of many individual organisms are well understood. However,

while carefully controlled laboratory experiments can be used to observe the dynamics

of an individual, an entire population cannot be observed in such a way. The only way to

understand the complex interactions between individual, population, and environment

is to construct a mathematical model of each and to solve that model numerically. A
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scientist’s analysis of such a model may yield explanations of any observed behaviour

such as seasonal blooming, toxic bloom formation, population distribution or chemical

transportation.

Furthermore, simulation facilitates scenario prediction, which explores the ecological

consequences of changes to exogenous conditions. Examples include the response to

artificial fertilisation of the oceans, the effects of climate change and the dispersal of

pollutant chemicals or diseases.

Population-based simulations treat populations of a functional group as a single en-

tity. They use prognostic equations to compute demography and biofeedback directly.

The Fasham model [14] is the definitive population-based plankton model. When com-

pared to individual-based modelling, population-based models have the advantage that

they are extremely computationally efficient, as they require numerical solution of a

modest number of coupled differential equations. Until the advent of powerful micropro-

cessors and supercomputers, population-based modelling was the only feasible method

of simulating plankton ecology. Population-based modelling has the disadvantage of

exhibiting instability for certain choices of parameter values [40, 59, 30].

The opposite extreme is pure individual-based simulation, in which every individual

is treated as an independent entity, with rules written for the individual rather than

for the population. This gives the virtual ecosystem the freedom to ‘adjust gracefully

to changes in exogenous forcing’ [56]. However, conducting such models can become

prohibitively computationally expensive when very large numbers of individuals are to

be simulated.

1.4 The Lagrangian Ensemble Metamodel

The Lagrangian Ensemble (LE) Metamodel [56] is a compromise between the population-

based and individual-based approaches. It treats each particle in the simulation as

a carrier of a number of identical individuals, called a sub-population. The size of

the sub-population is dynamic during a simulation and the number of sub-populations
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is controlled by adjustable particle management rules. Thus, if the number of sub-

populations is set to one, the LE ‘metamodel’ can be used to emulate a population-

based model, whereas if all sub-population sizes are one, then it emulates some of the

characteristics of an individual-based model. Note that the LE method does not permit

direct interaction between individuals (see section 3), so there is some distinction in the

latter case.

The LE Method provides a method of addressing computational performance by

limiting the number of individual particles to be simulated, while also providing an

adjustable control over demographic noise.

1.5 Automation

Building computer versions of ocean models in conventional programming languages is

an error-prone and complex process that requires software engineering skills generally

beyond that of the typical biological oceanographer. The main objective of this thesis

is the design, implementation and evaluation of a problem solving environment that

provides tools that a biological oceanographer can use to build and analyse models,

without the aid of an experienced software engineer. Hence, the software engineering

investment is made ‘upstream’, in order to reduce the need for skilled programmers

‘downstream’.

The aim is to reduce the task of building a model to that of writing rules for the bio-

logical functions of individual plankters, which is the way that biological oceanographers

often think about the individuals being modelled. This is done by the introduction of

a modelling language that is largely based on mathematical equations, but additionally

carries a small number of ecosystem-specific functions for supporting the LE metamodel.

This is intended to be easily grasped by biological oceanographers, empowering them to

build LE simulations rapidly and analyse the models’ emergent behaviours.
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1.6 The Virtual Ecology Workbench

The Virtual Ecology Workbench (VEW) is a suite of applications designed to facilitate

the building of Lagrangian Ensemble-based models, and the analysis of their emergent

properties. The first version of the VEW did not achieve this goal: it relied on com-

mercial software for model building which did not solve the problem of making model-

building accessible to end users. As a result, models were mostly hand-coded in C by

computer scientists.

The second version added interfaces for varying parameter values, creating scenarios

for models and managing job control, but this still relied on underlying model code

hand-crafted in C; it did not introduce methods for creating new models.

This thesis contributes the ‘engine’ to the third version of the VEW, which for the

first time offers complete automation of Lagrangian Ensemble based simulations. It in-

corporates a completely new architecture for model building, using a model specification

file that is created by a model builder with an equation editor interface, extended by

a number of other applications and compiled into an executable simulation instance in

Java.

This version of the VEW has been built by a team of researchers. The specification

for the VEW has been developed by Professor John Woods, and the engineering of the

software has been supervised by Dr. Tony Field. This thesis presents Planktonica:

a problem-solving environment consisting of various user interfaces that expose to the

user an underlying modelling language, allowing them to create and edit new models of

plankton. Planktonica includes a compiler that produces executable Java classes from

models, and a prototype of an interactive debugger.

Other applications contribute to the specification of a model: the software that

guides the user through specifying the scenario, parameter settings, job control and

post-simulation analysis was developed by Adrian Rogers. Additional work on viewing

climatological data was done by Matteo Sinerchia, who is using VEW 3 to develop new

models for testing theories of fisheries recruitment. See chapter 7 for more information
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about the components of the VEW.

1.7 Planktonica

Planktonica encapsulates a formal implementation of the Lagrangian Ensemble meta-

model. The metamodel describes the kind of simulations that can be built, including

the definition of a particle, the ways that particles may interact, and the environment

in which the particles exist. In particular, the metamodel defines the environment as a

1-D water column stratified into layers, where each particle’s position is defined by its

depth. Each particle is a sub-population of individuals, but when building the model,

the user does not have access to the particle’s sub-population size, or to the internal

properties of any other particle.

A separation is thus introduced between the metamodel and the model, which can

be thought of as a curtain. The metamodel properties described above exist behind

the curtain, and are the basic rules for construction of all simulations. In front of the

curtain, Planktonica provides a mathematical modelling language for designing plank-

ton. Arbitrary chemicals can be introduced, which may have action spectra to represent

pigmentation.

Model Designer

Model (XML)-
-

�
�Species Builder

Particle Management

Scenario

Output Control

?

Compiler
?

?
Java Classes

Figure 1.2: The Role of Planktonica

Figure 1.2 shows the role of Planktonica. The Model Designer is a graphical user
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interface exposing the mathematical modelling language to the user, and the creation of

a set of functional groups, chemicals, and associated rules consistent with the require-

ments of the Lagrangian Ensemble metamodel. The newly created model specification

is represented in an XML document, which is then modified by the other VEW appli-

cations mentioned above. Finally, Planktonica’s compiler produces Java classes which

form an executable simulation.

1.8 Objectives

The over-riding objective is to substantially raise the level of abstraction used in the

model development process so that modelling becomes a process of composing clearly

identifiable and potentially re-usable model components. Crucially, the components and

the model structure should make sense to a modeller. Three major questions arise:-

• What abstractions, modelling formalisms, development tools etc. should be pro-

vided to enable a biological oceanographer to build a new model, without resorting

to low-level ‘programming’ in the traditional sense?

• To what extent can a component framework based exclusively on primitive rules

or primitive equations be used to construct scientifically useful ecosystem models?

• To what extent does an integrated framework that supports a rule-based LE ap-

proach simplify the task of model design, implementation and analysis.

The rest of this thesis can be seen in part as an attempt to answer these three

questions.

1.8.1 Challenges

Separation of Concerns

The first challenge is to introduce a separation between the concept of metamodel from

object model. In the past, models have been implemented as sets of C modules, with
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metamodel and object model combined. This made the implementation of new ex-

tensions difficult, through code complexity, and the lack of opportunity for re-use of

components. This gave rise to a legacy problem in which many different versions of an

underlying reference model, each with a different set of modifications, came into being.

This requires identifying every point where there must be communication between

metamodel and object model, and providing a suitable interface. Since the target user

is not a software engineer, the interfaces between metamodel and object model must be

as few, and as simple as possible.

Model Formalism

A modelling formalism, and a suitable tool set is required to allow rules to be built in

a ‘programmerless’ way. Of course, any notation can be considered a programming lan-

guage; the objective is to constrain the semantics of that language in order to strike an

acceptable balance between simplicity and expressibility. Experimental biologists and

biological oceanographers use the language of mathematics to describe primitive biolog-

ical processes, often in the form of primitive equations or rules. A suitable formalism

should be in a similar style.

Internal Consistency

Much of the complexity of model development is in ensuring that the model is internally

consistent. Rules are built out of mathematical constructs, using different types of

variables and parameters, which have associated units. Mistakes involving units are

common, for example interchanging chemical concentrations between micrograms and

millimols.

While those errors might be considered as basic, they are common and often missed.

Having made the modelling language familiar to biologists, the tools should also aim to

address common problems with designing such models, such as type checking and unit

checking.
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Evaluation

This work is interdisciplinary in nature and sits at the boundaries of conventional com-

puter science and biological oceanography. This thesis does not specifically aim to

present novel computer science, nor to develop a deeper understanding of the plankton

ecosystem per se. The objective is rather to apply sound computing principles to the

development of tools that enable the end users to undertake novel and interesting science

as efficiently as possible.

Specifically, the challenge is to provide software tools that enable biological oceanog-

raphers to build and analyse models of ocean life, and success is thus measured by the

ease with which they may do so, rather than, necessarily, the novelty of the science that

results from any particular case study.

The initial milestone for Planktonica’s development is the re-implementation of the

WB model [4], a Lagrangian Ensemble-based model already in use [57, 54].

Two further variations are then introduced. The first models the deposition of a

buoyant, light-absorbing pollutant, that disperses over time, and has an occlusion effect.

Analysis shows the effect of dispersion rate of the pollutant on the turbidity of the water,

and the corresponding effect on the population of phytoplankton.

The second experiment, based on previous work by Simon Smith [47], introduces a

delay between ingestion and excretion for copepods. A pollutant is added which diatom

absorb. Copepods ingest the diatoms, excreting chemicals they gained by the ingestion

a while later. The time between ingestion and excretion affects the rate at which the

inert chemical is transported, as shown by this experiment.

1.8.2 Contributions

The contributions of the thesis can be summarised as follows.

• A metamodel kernel is presented, incorporating a physical environment supporting

optics, turbulence and biofeedback. A chemical environment is included allowing

arbitrary chemicals and pigments to be included.
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• A mathematical modelling language, with accompanying operational semantics,

is introduced, enabling users to describe the behaviour of plankton. It includes a

small number of special purpose functions that allow interactions between object

model and metamodel.

• A new Planktonica-compliant rendering of the WB model is presented in full,

which can be used as a base for creating a range of new scientific experiments, as

demonstrated.

• The modelling language, accompanied with various prototype interfaces, forms a

platform independent problem solving environment for ‘programmerless’ creation

of models, promoting modularity, automatic documentation, and a prototype in-

teractive model debugger. This is presented in detail.

1.9 Contents of this Thesis

Chapter 2 describes the background to plankton research, beginning with a summary of

population and individual-based modelling, and particularly the Lagrangian Ensemble

method (section 2.2.1). We also outline the history of the Virtual Ecology Workbench,

on which this work builds, and compare the simulations to agent-based artificial life

simulations.

Chapter 3 focuses on the distinction between metamodels and object models, be-

ginning by defining in more detail what metamodels are. This addresses the separation

of concerns challenge, using the concept of a curtain. Elements in front of the curtain

are accessible to the user; behind the curtain there are metamodel properties regarding

the Lagrangian Ensemble method and the virtual physical environment. The choice of

where to place the curtain (i.e., what to expose to the user), is explained.

Chapter 4 defines in general the type of rules that can be built by the user. Our

discussion is informal at this stage. A formal operational semantics for the modelling

language is presented in chapter 5. These two chapters are then illustrated in chapter 6,

with a thorough description of the WB model, as re-implemented using Planktonica.
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The model builder fits into the Virtual Ecology Workbench (VEW), a suite of appli-

cations that provide the required information to turn the model into a virtual ecosystem.

This includes the specification of species and varieties, the scenario, initial and boundary

conditions, particle management, output options and run control. Chapter 7 outlines the

bigger picture of virtual plankton ecology and the way in which Planktonica contributes

to the larger process from initial design to final analysis. Of these, the final compilation

stage (section 7.8), and LiveSim, the interactive simulation viewer (section 7.10) are

delivered as part of this work. The other parts are contributed from other researchers,

as we describe.

Planktonica is then evaluated in chapter 8 by demonstrating how it can be used to

facilitate new science. Results are presented from the new implementation of the WB

model, and using that as a base, some simple experimental models are presented that

demonstrate Planktonica’s potential as a research tool.



Chapter 2

Background

There are broadly two approaches to modelling ecosystems. Population-based models

consist of differential equations defining the change in a population size over time. Such

models are solved directly by numerical integration. Individual-based models consist

of equations that describe the behaviour of an individual; a simulation consists of a

number of autonomous individuals. These models are solved by computing sample

trajectories of each individual over time. In order to reduce demographic noise, a large

number of individuals may be required; this incurs a computational expense that has

historically limited the use of individual-based models. Population-based models are

computationally cheaper, since they describe the plankton population as a continuum

rather than as individuals.

2.1 Population-based Ecosystem Modelling

One of the most widely used models of the plankton ecosystem is the Fasham model [14].

This is a population-based model consisting of seven coupled differential equations that

describe the evolution over time of phytoplankton, zooplankton, bacteria, detritus and

particulate organic nitrogen, nitrate, ammonium and dissolved organic nitrogen. The

model equations are coupled by the flow of nitrogen between compartments, where the

biological and physical processes causing transfer of nitrogen include grazing, nutrient

24
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uptake and mixing. Each of the seven principal equations is defined as the rate at which

that population or chemical concentration may increase or decrease with respect to time,

in terms of the behaviour of the other components; this includes zooplankton grazing,

phytoplankton growth by photosynthesis, and detrital remineralisation.

Around thirty parameters are used. Ten of these are parameters are adjusted, some-

times to fine-tune the model and sometimes because no obvious estimate is available

for that parameter. The relative simplicity of the model compared to other comparable

plankton models [26], has made it a popular platform. ERSEM [3] is another example

of a more complex plankton ecosystem model using population-based equations.

2.1.1 Stability

One of the key problems with population-based models is that they are unstable for

some parameterisations - an artefact of the model itself rather than the nature of the

integration method used. In the context of the Fasham model, Popova, Fasham et

al [40] suggest that the instability shown represents inherent instability in the plank-

ton ecosystem itself. In contrast Woods et al [59] argue that the instability is due

to population-based handling of biofeedback, and that the real plankton ecosystem is

inherently stable, and possible to predict via an individual-based approach.

A further complication is known as the ‘closure’ problem. The highest trophic level

specified in the Fasham model is the Zooplankton herbivores, but in practice, the zoo-

plankton population is limited by higher predators not specified in the model, and the

population of the higher predators is not available. This causes a problem calculating

the amount of such predation that should occur. The choice of closure equation was

shown by Steele and Henderson [48] to significantly affect the dynamics of simple models,

supported and formalised more recently by Edwards and Yool [12].
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2.2 Individual-based Ecosystem Modelling

Individual-based modelling (IBM) uses rules or equations written for individual particles,

rather than for the whole population. As the state and trajectory of each individual

must be modelled explicitly, IBM has historically been restricted by computational cost,

but advances in computer performance now make it more tractable.

Given definitions for what an individual in the simulation does, IBMs aim to observe

and explain the emergent properties of a system: the histories of the particles, the

demography of the plankton, and the resulting feedback to the environment. Since the

particles contribute individually to this feedback, their combined effect is hard to predict,

except by these kind of simulations; this is true of plankton ecosystems both virtual and

real. Diagnosis of the results of individual-based models is shown to produce stable

results more consistent with observation than those of population-based results [59].

Individual based models have been used to expose the emergent properties of many

ecosystems, for example cockroaches [35, 1], birds [41], foxes and rabbits [18], and

bees [49]. However the plankton ecosystem presents a more difficult challenge because of

the microscopic scale of the organisms, and the enormous number of individuals required

to build realistic scientific models.

2.2.1 The Lagrangian Ensemble Method of Integration

The Lagrangian Ensemble method [56], introduced by Woods and Onken [57, 54] is a

specialisation of an individual-based modelling system, and a compromise between the

need for individual-based modelling, and the computational cost when applied to mi-

croscopic life. Rules are written for an individual plankter, but using the LE method,

each agent represents a set of identical plankters. These plankters have the same state,

represented by a number of internal variables which changes according to the rules,

in response to the ambient (i.e. local) environment. The population then has a feed-

back effect on the environment, which in turn affects the ambient environment of the

individuals at their next location.
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In such a system, the use of sub-populations allows for a quantitative compromise

between reducing noise and improving performance, while the biofeedback mechanism

proves to be critical for stability [59].

The WB model [4] is an individual-based model representing a plankton ecosystem.

It is similar to the Fasham model in terms of the functional groups and chemicals that are

modelled, but differs in that the rules are specified for individuals rather than for whole

populations. Furthermore the rules for the plankton in the WB model are derived from

laboratory experiments, in contrast to most population-based models, where parameter

values are often guessed.

The model is integrated using the LE method, where each individual in the sim-

ulation represents a sub-population of identical plankters with the same state proper-

ties, but separate sub-populations have separate states and trajectories. A comparable

method has also been used by Broekhuizen [7]. In their original form, both the WB

model and Broekhuizen’s model were represented as modules of C-code, hand-crafted

by a programmer. We believe that Planktonica represents the first attempt to make

model building a task that biological oceanographers can use directly without hand-

coding in a conventional programming language.

2.3 Modelling Languages and PSEs

A problem-solving environment or PSE is defined as a ‘computer system that provides

all the computational facilities necessary to solve a target class of problems’ [16]. PSEs

aim to exploit hardware and algorithm power to deliver ‘cheap and fast’ problem solu-

tions with minimum knowledge in computer programming [20]. They are not entirely

programmer-less, since any simulation requires representation in some language, how-

ever PSEs aim to make that language as natural to the user as possible, rather than

using languages common to computer science.

Within the realm of mathematics, MatLab [29] and Mathematica [28] can be thought

of as PSEs. They provide ways of writing differential equations and interactively exam-
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ining their results; Netsolve [2] additionally provides the interfacing to network resources

for efficient or parallelised solutions of large problems. These systems provide a range

of functions useful within their target problem class, in the case of Netsolve the efficient

numerical solution of differential equations.

More often, systems like Wise [25] allow the user to link together a number of pre-

written modules while specifying couplings between the modules, and different initial

conditions or parameter values. Wise is targeted at ecosystem modellers, particularly

involving nutrients in soil. A similar system for plankton research is the predecessor to

this work, the Virtual Ecology Workbench 2 [55], which allowed grouping and parame-

terisation of pre-written C modules for different plankton types and nutrients. In both

examples, the creation of new modules is not supported, except by explicitly program-

ming them.

2.4 Agents and Artificial Life

Particles in a plankton simulation can be thought of as agents: individuals following a

set of rules. The rules for agents may either be fixed, i.e. non-adaptive, or they may

adapt over the course of a simulation [11]. Agent-based simulations have been written

in a ‘one-off’ way for many specific domains, providing users with the ability to change

parameter values for the particles and observe the results [38, 41, 18, 10]. In such

simulations, the behaviour is usually fixed into the simulator, and parameterised by the

user.

Agents have been designed that represent living creatures, either observed or imagi-

nary; computer representations of the creatures and their behaviour are termed artificial

life [34]. Artificial life-forms exist in many forms; Tamagochi and similar toys [9] were

popular in the 1990s, while ‘Creatures’ [23] were the equivalent of Tamagochi on desktop

computers. DaliWorld [6] allowed users to create a fish on their desktop that would swim

to other DaliWorld users’ desktops, thus forming a virtual distributed world-wide ocean;

but these artificial life projects were more about creating new animals than modelling



CHAPTER 2. BACKGROUND 29

existing ones.

The algorithm of Boids [41], originally a simulation of birds flocking, has been widely

developed in films to model steering and obstacle avoidance of flocks of creatures; it was

used to model swarms of bats and an army of penguins in Batman Returns, a gallamunus

herd in Jurassic park, and a wildebeest stampede in The Lion King [39].

Frameworks also exist for creating new agent-based simulations. Many of these like

Swarm [24] or Echo [21] take the form of programming libraries, providing computer

scientists with convenient tools to write models quickly, simplifying mundane tasks like

memory management or file handling, and providing various functions for particle in-

teractions and so on. However, they rely on programming skill in Java or C for new

simulations to be built using the libraries.

Higher level systems are also being developed. For example Adise [15] allows a user

to design adaptive agents using mathematical rules via a high-level user interface, using

plug-in modules for the environment. Destiny Studio [50] is a recent high-level simu-

lation environment for building agent-based models without the need for conventional

computer programming. NetLogo [51] uses an extended version of the Logo language to

support agents and concurrency, providing a rich user interface for designing rules.

The strengths of these environments are in their rule-building capabilities. We aim

to do the same here, but for the Lagrangian Ensemble method of integration. The aim

is to provide flexibility - being able to create a wide range of rules - while also keeping

model-building simple.

2.5 Virtual Ecology

The Virtual Ecology Workbench (VEW) is a problem-solving environment specifically

for the plankton ecosystem, first developed by Woods and Barkmann [4], incorporating

the Lagrangian Ensemble method of integration [57]. The central aim of the VEW is to

allow design, simulation, and analysis of plankton models to be done in one problem-

solving environment.
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A model in the VEW consists of a water column divided into one-metre layers. The

surface area is somewhat arbitrary - typically it is in the range of a metre to a kilometre

squared, depending upon the application. The simulation reads forcing climatological

data and uses it to calculate the irradiance, temperature, density and salinity throughout

the column. It is also used to calculate the turbocline, above which the water is assumed

to be randomly mixed and below which there is assumed to be laminar flow.

The biological particles in the WB model are phytoplankton which are plant-based

plankton that gain energy by photosynthesis and zooplankton, which are herbivores

that ingest the phytoplankton. Phytoplankton absorb nutrients including ammonium

and nitrate from the water, and they also contain chlorophyll which has a biofeedback

effect on the irradiance and temperature of the water. The WB model is essentially an

individual-based equivalent of Fasham’s original population-based model.

VEW 1 assembles C code to represent this behaviour, by importing ready-made

modules of code from a library, offering tools to alter the parameters, initial conditions,

and boundary conditions for the simulation, and to analyse the results afterwards. It

cannot, however, create new particles, or add new rules to existing particles. Further-

more due to the difficulties in compiling the assembled modules, users with programming

knowledge typically carry out edits on the final code rather than at the interface level.

Thus many different instances of the base code exist, many containing different improve-

ments or corrections. This has given rise to a code legacy problem that historically has

complicated the development of new models.

2.6 Summary of Planktonica

This thesis is about creating a new Virtual Ecology Workbench, allowing for the first

time the creation of new plankton models without needing to hard-craft them in con-

ventional programming languages. Simulations are individual-based, incorporating the

Lagrangian Ensemble method of integration. Each individual is a Lagrangian-Ensemble

based agent, with rules describing its behaviour. The WB model is used as an example
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of a plankton ecosystem model.



Chapter 3

Modelling Ecosystems

This chapter contains a description of the fundamental components of a model ecosys-

tem, within the proposed framework. It begins by defining the metamodel - the fixed

parts of the simulation - and the object model, which defines the biology and chemistry

of a particular experiment. Interfaces between the two are required, and are described

in this chapter.

3.1 The metamodel

The metamodel specifies all the generic properties of object models that can be built using

that metamodel; it is the framework that all object models must fit. The metamodel is

revealed primarily by a user interface, permitting the user to create only models that fit

the generic properties of the metamodel. Accompanying this interface is a compiler that

produces new Java classes from the object model, which along with some pre-defined

Java classes form an executable simulation. The role of the metamodel and object model

is shown in figure 3.1.

The divide between the metamodel and the object model can be thought of as

a curtain separating what is visible to the user from what is not. The aim of this

separation is to reduce the task of constructing a model to that of defining the biology

and chemistry; all generic behaviour and implementation details are hidden behind the

32
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Figure 3.1: Metamodel and object model

curtain, whereas the particles and chemicals are designed by the user in front of the

curtain. This terminology will be used throughout this chapter.

When the user needs to refer to properties behind the curtain, special interfacing

methods are provided, either though exposing read-only variables for the user to incorpo-

rate into rules, or by calling special purpose functions from a library (i.e., an application

program interface, API).

3.2 The Community

Figure 3.2 shows the hierarchy of groups of plankton represented by Planktonica. The

challenge here is to allow the user to easily create many different kinds of plankton. In

nature we observe that many different species of plankton exhibit the same basic be-

haviour, but at different rates, dependent perhaps on the characteristics of that species,

their size for example. Therefore, we separate the behaviour of plankton from the char-

acteristics that affect their behaviour.

A functional group contains the rules for the behaviour of a group of plankton. This

includes the option to define stages for a functional group’s life cycle, where it may
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behave differently in each stage.

By default, a single species of each functional group, and a single variety of each

species are created by Planktonica, meaning that all members of the functional group will

behave in exactly the same way. The user specifies biodiversity by creating additional

species and varieties, which are new parameterisations of that functional group.

A species in Planktonica defines some property that affects its behaviour. For ex-

ample, we may create a species of plankton that behaves in a way related to its size

(allometry), and another species that behaves proportionally to its maximum swimming

speed. We call this dependent property the base parameter.

Having created a species with a base parameter, the user can then create varieties;

each is a group of plankton with the base parameter set to a certain value. Thus the

user can quickly create a number of parameterisations of a functional group to represent

biodiversity. All particles in the simulation exist at the variety level. See section 3.4.3

for further detail about how biodiversity is represented.

3.2.1 The Lagrangian Ensemble Method

The Lagrangian Ensemble Method considers sub-populations of individuals; each sub-

population is represented as a particle in the simulation, which is defined at the variety

level of the plankton community. Users specify biological behaviour in terms of indi-

vidual organisms; the sub-population size is not made visible to the user, and cannot

be directly changed. Special functions are required to describe behaviour in which the

sub-population size is relevant.

The model is integrated in timesteps. In each timestep the state of each particle is

updated. This may result in a change in the internal state of the particle, including its

sub-population. The timestep size is exposed to the user as a system variable 4t, as it

will be required in all rules that describe a change over real time.

Particle-to-particle interaction is forbidden; only particle-to-concentration interac-

tion is allowed. A particle may prey or graze upon another only by interacting with

the target concentration. The number of individuals of a given type (its concentration)
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Community

Functional Group 1 Functional Group 2 Functional Group 3
(stages) (stages) (stages)

Species 2.1 Species 2.2 Species 2.3

Variety 2.3.1 Variety 2.3.2 Variety 2.3.3

Figure 3.2: The Plankton Community

is computed automatically each timestep, in each layer of the water column, defined

below.

3.3 The Environment

3.3.1 Physics

In the Planktonica metamodel, the ocean environment is represented as a water column

stratified into layers, (see figure 3.3) making it a one-dimensional grid. At each grid

point, values are maintained for the temperature (◦C), density (kgm−3), salinity and

irradiance (Wm−2). Irradiance is available in two forms; IV , visible irradiance, defines

the energy due to irradiance for just visible wavelengths, whereas IF , full irradiance,
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defines the energy due to irradiance including the infra-red and ultra-violet wavebands.

These two types of irradiance are used internally within the physics, but are both exposed

to the user, along with temperature, density and salinity, for writing rules.

The water column may be fixed to a certain geographical location, or it may drift

in response to ocean currents and wind. In either case, forcing climatological data is

read in for each timestep, and is used to calculate the properties of the column at each

grid point, and also the depth of the mixing layer, exposed to the user as the variable

MLDepth. Above this depth, turbulent mixing occurs, and below this depth is laminar

flow. The physics of the water column is predefined and cannot be changed by the user.

Internally, the grid points for physical properties are not equally spaced: higher res-

olution is provided near the surface, but this is unimportant from the users’ perspective.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Behind curtain

Optics Turbulence
...

Surface metre
Thin layers

Rest of layers
1 metre each

Pigment Pools
�

6

?

Temperaturez, Densityz,
Salinityz, Irradiancez
Turbocline,

Particles

Figure 3.3: The Physical Environment
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3.3.2 Chemistry

The environment supports arbitrary chemicals specified by the user. Each chemical

is modelled as a continuum; the introduction of a chemical c, shown in figure 3.4,

automatically introduces a variable cconc at each grid point, and two variables within

the particle: cpool, the internal pool and cuptake which stores the amount of chemical

gained by the particle through uptake, in the previous timestep. The cuptake variable is

calculated by the metamodel in each timestep, and has a special purpose when handling

chemical conservation, described below. All of these automatically created variables are

visible to the user.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In front of curtain

Behind curtain

....

.

Depth
Layers

(New)

Chemical

c

�
? ?

-
-
-
-
-
-

-

Add(c)

cconc is added

to each layer

cpool and

cuptake are

added to all FGs

FG1 FG2

Figure 3.4: Introducing a chemical, c, to a model containing two functional groups

The effect of turbulence is approximated by averaging the concentrations of all chem-

icals from the surface to the turbocline; this is done automatically each timestep.

The ambient concentration of a chemical for a given particle is the concentration at

the nearest grid point to the particle. Particles can transfer chemicals between their
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internal pool and the environment, but to allow automatic conservation of chemicals,

users cannot write to the chemical concentration directly.

When many particles uptake chemicals in the same layer, the total amount of chemi-

cal requested might exceed the amount of chemical available. In this case, depletion has

occurred, and conservation of chemicals is enforced by the metamodel. Since particle-

to-particle interaction is not permitted, there is no prior way of predicting whether

depletion will occur. Figure 3.5 shows the method of correction for chemical concentra-

tions that have been depleted.

uptake(c, x) (3.1)

where c = name of chemical

x = amount to uptake (micrograms)

The update function issues a request for chemical, which is stored internally. At the

end of the timestep, when all requests have been made, the concentration is updated,

and if it became negative, a depletion error occurred. All the particles that absorbed

that chemical are revisited, and have their cuptake variable adjusted, such that the total

of all the uptakes for that chemical in that layer is equal to the initial amount of chemical

available. The amount of chemical the particle absorbed is stored in the cuptake variable

within the particle, which the user can read. The ambient concentration is then set to

zero.

Chemicals can also be released to the ambient environment. As cconc cannot be

written to directly, a special function is provided to increase the concentration of a

chemical. It is similar to uptake(c,−x), except that since depletion protection is not

required when releasing chemicals, the registers described in figure 3.5 are not used when

the release function is called.

release(c, x) (3.2)

where c = name of chemical

x = amount to release (micrograms)
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Figure 3.5: Chemical uptake, with behind the curtain depletion handling

Note that while the user models the chemistry of an individual, behind the curtain

uptake and release are applied at the sub-population level. The quantity of each chemical

to uptake or release is multiplied by the size of the sub-population, as all the individuals

in the sub-population do the same thing.

3.3.3 Biofeedback

Some chemicals correspond to pigments and have associated action spectra. An action

spectra defines a property of a chemical as a function of wavelength. The user can define

the values for each of 25 wavebands, as described in section 6.3. The presence of pigments

in solution, or within the pools of particles affects the way light is dissipated, thus
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affecting the photosynthesis of the particles (self occlusion). This bio-optical feedback

from the biology to the physics is managed automatically, and is mediated entirely

through the pigments, using their action spectra.

3.4 Particles

A particle in the simulation is represented as a set of state variables. Some state variables

are automatically created: these are the pool and uptake variables for each chemical, the

depth, stage (see below), and type of the particle. Other state variables can be created

by the user. In each timestep, a set of rules is executed for each particle, which define

the new state of the particle in terms of its previous state, and its ambient environment.

3.4.1 Staged Growth

In nature, organisms grow through a number of stages in a life-cycle. For example,

copepods are born in infancy, a proportion survive to become juveniles, then they grow

to become adults, at which point they reproduce, and then they become senile, and

eventually die. In each stage of their life-cycle, their behaviour changes. We model this

behaviour by introducing the concept of a stage.

Particles in Planktonica may exist in different stages, and the rules describing one

stage may be different to those in another stage. A functional group contains a set of

rules, and the stage selects a subset of those rules that are to be executed in that stage.

Furthermore predators targeting a certain functional group may prefer to eat par-

ticles of one stage over another. Since particle-to-particle interaction is not permitted,

the predator cannot establish the stage of a plankton. To provide such selective in-

gestion, the stage variable is handled behind the curtain, and predators can target a

concentration of particles indexed by both type and stage.
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Changes in Stage

A particle may also change its stage, either deterministically, or probabilistically, using

the following two special functions.

change(s) (3.3)

where s = name of stage

pchange(p, s) (3.4)

where s = name of new stage

p = ′probability′ of change

When the user writes a probabilistic stage change, they expect that the individual

they are modelling has a fixed probability p of changing stage. Behind the curtain

however, p represents a proportion of the sub-population that will change stage, hence

the actual behaviour of the metamodel is that shown in figure 3.6; the sub-population

splits into two, the proportion p of the individuals assuming the specified stage.
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Figure 3.6: Probabilistic Stage Change

Implementation Detail

Note that the user could specify stages using a state variable representing the current

stage of a particle, which could be used when defining the rules for that particle. How-
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ever, this would not have supported selective ingestion of particles of a certain stage; as

particle-to-particle interaction is forbidden, the stage of a potential prey is not visible

to the predator.

Furthermore, making stages a metamodel property allows a minor performance im-

provements to be made; the particle update for each stage is represented in a separate

Java class, removing the need to check whether each rule should be executed in the

current stage.

Creating New Particles

Particles may spawn other particles of the same functional group, but the spawned

particles may assume any one of the parent’s stages. Additionally, the state variables of

the spawned particles may on creation have different value to those of the parent.

create(s, n, [a]) (3.5)

where s = stage of spawned particle

n = number of individuals to create

[a] = assignments for offspring state

The create function is provided for this purpose. By default, the state variables of

the spawned particles will be copies of those of the parent, but the list of assignments,

[a], allows the user to set any number of state variables for the offspring, to values based

on the parent’s state, and the ambient environment. Thus, in figure 3.7 below, the set

[a] maps the original state variables, v, to the new state variables v′.

While the user expects one individual to create n offspring, behind the curtain all the

individuals of a sub-population of size c, produce n offspring each, and all the offspring

together comprise a single new sub-population of size cn, which is independent from the

parent.
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3.4.2 Cell Division

Plant-based plankton grow by cell division rather than by reproduction. This is a

different biological process from reproduction, and we model it separately.

divide(n) (3.6)

where n = number of cells to divide into

.

This specifies that an individual divides into n individuals, and the metamodel in-

terprets this as all individuals of the sub-population dividing into n. Thus if the original

cell count was c, the final sub-population size will be cn.

Note that a similar result could have been achieved using the create function, but

the point here is to model biological processes. Furthermore, using the create func-

tion for every type of reproduction can be expensive; the prime example is during a

phytoplankton bloom when the population of phytoplankton increases very sharply.



CHAPTER 3. MODELLING ECOSYSTEMS 44

Particle Management

A fundamental difference between cell division and creation is that after creation, the

parent and offspring are independent from each other; they have their own trajectories,

meaning they have entirely separate state. Cell division by contrast results in more

individuals, but they all have the same trajectory - the same state variables, moving

together as one particle.

Apart from creation of new particles, the only way that the number of particles

(agents) in the simulation changes is by particle management, which the metamodel

supports. For each type (variety, described below) of plankton, and each stage, the

user can specify how many independent sub-populations are to exist. Two methods are

provided; the first specifies that if the number of particles exceeds a certain threshold,

the smallest sub-populations should be merged until the number of particles is below

that threshold. The second specifies that if the number of particles drops below a certain

threshold, the largest sub-populations should be split until the population size is above

that threshold. See section 7.4.

The user specifies these thresholds, which can be applied either to each layer in turn,

or to the whole column at once.

3.4.3 Biodiversity

We define a functional group to be a class of organisms that for a given stage perform

the same set of rules. A variety is a parameterisation of that functional group, and all

individuals are defined as members of a variety. This models the biodiversity observed

in nature, allowing the user to create many parameterisations of a functional group,

rather than many separate functional groups.

Two levels of parameterisation are used, as demonstrated in figure 3.8. A functional

group defines a rule, which in this case is a simple function of some parameter y. The

species defines the relationship of y in the form axb, defining the values for a and b, for

a given base parameter x, which is specified at the variety level. The form axb is chosen

as it can exhibit a rich set of characteristics using only two parameters.
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Functional Group

Species 1 Species 2

Variety 1 Variety 1

Variety 2 Variety 2

x = 1

x = 2

x = 1.5

x = 3

y = a xb

where a = 0.63, b = 1
2

y = a xb

where a = 0.7, b = 1
3

p = f(y)

Figure 3.8: Functional Groups, Species and Varieties

3.4.4 Motion

The depth of a particle may be changed by model motion, e.g. by swimming, sinking

or turbulent advection. All particle motion is presently handled by the user. In nature,

particles may interact with their environment along the trajectory of motion. A special

function is provided to sum a specified quantity between two depth values.

x = integrate(f) (3.7)

where x = finite sum of f over trajectory

f = any function

The function represents a finite sum over the distance the particle travelled in the

previous timestep. Figure 3.9 shows how this is computed for function f . For example

integrate(1) returns the distance the particle travelled in the previous timestep using
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the integrate function.
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Figure 3.9: A finite sum for a particle’s trajectory using integrate

Any variables in function f that depend on depth, are applied to the ambient envi-

ronment of the particle, as it moves along its trajectory. As a contrived example, the

following rule calculates the average temperature, (a depth-dependent property), of the

water through which a particle travelled during a timestep.

Tavg =
integrate(temperature)

z − z[−1]

where z = depth of particle at start of timestep t

z[−1] = depth of particle at end of timestep (t− 1)

Note also the notation of z[−1]. The set of rules for a particle define its state at the

start of timestep (t+ 1), in terms of its state at the end of timestep t. When a variable

like z is used on the right hand side of a rule, its value is that which z held at the end of

the previous timestep. When z[x] is used (where x is negative), the value is taken from

the end of timestep (t-x), and we say that z has a history.

The user can specify that any particle state variable should have a history, and it

is the user’s responsibility to define its size. This allows the modelling of particles with

biological memory - see section 4.3 for further discussion about variable types.
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3.4.5 Ingestion

A predator may feed on any individuals it encounters during a timestep. The result

is that the sub-population sizes of the predated particles need to be reduced by an

ingestion rate over the distance the predator travelled. This behaviour is provided with

the ingest function:-

ingest(V ∗
, r) (3.8)

Here, V ∗ can be thought of as a concentration of prey of a particular variety, in

a particular stage, and r as the preferred rate of ingestion. Behind the curtain, the

prey that the predator encountered as it moved along its trajectory each have their

sub-population reduced according to the rate.

This is, however, a simplification. A model may consist of many different varieties in

any number of stages. As defining an ingestion rule for each variety of prey in each stage

would be cumbersome, we instead model sets of particles that are targets for ingestion.

Using conventional mathematical notation, we therefore define V ∗ as a vector containing

all the particle concentrations that the predator will eat, and r is defined as a vector of

rates, one for each target in V ∗. The members of V ∗ and the associated values of r are

defined in VEW Controller, a separate utility which allows the user to define the species

and varieties for a model. This is described in detail in section 4.3.9.

3.4.6 Changing the Metamodel

Changes to the metamodel are expected to be rare, but may occur over time. Such

changes will require re-programming in up to three places: the interface, the compiler,

and the fixed simulation classes. They may also invalidate previous models unless par-

ticular care is taken to ensure backward compatibility.

However, more radical changes may be required. For example, the physical environ-

ment at present is fixed and provided as standard for all models. Other work [27, 44] is

generalising this; for example, the physics code is being re-written in a rule-based way,

allowing the user to choose either the standard physics environment as before, or instead
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to write their own turbulence or optics equations. Moving from 1-D to 3-D space [44]

may require some changes, since all particles will now be defined with three ordinates,

as will their ambient environment. Note however that except for rules regarding motion,

the biological rules will be equally applicable to a 1-D or a 3-D metamodel.

3.5 Summary

In this chapter, we have described the contents of the metamodel upon which all object

models must be built. The metamodel incorporates the Lagrangian Ensemble method of

integration which is individual-based in that rules are written for an individual plankter,

but Ensemble-based, in that each agent in the simulation represents a sub-population

of plankton with its own trajectory. The Lagrangian Ensemble method forbids particle-

to-particle interaction.

The metamodel currently includes a water column, which is a one-dimensional grid.

Each grid point contains physical properties for optics and turbulence, which are au-

tomatically updated. Functional Groups in an object model define the behaviour of a

particle, whereas varieties define a parameterisation of a functional group. All particles

exist at the variety level, and are also defined by a stage, which can represent a different

categorisation of a variety, for example a different stage in a life cycle. Particles can

selectively ingest on other populations, choosing the population to feed by variety and

stage.

The chemicals in the environment are defined by the user. Each chemical is repre-

sented as a continuum, and the introduction of a chemical causes the automatic creation

of an internal chemical pool for each particle, a concentration within each layer, and an

uptake variable in each particle used for chemical conservation checking.

Where metamodel properties are required, namely sub-population size, write-access

to chemical concentrations, particle creation, and handling the intermediate gridpoints

a particle travels through, API functions are provided.



Chapter 4

Introduction to Modelling with

Planktonica

This chapter describes the underlying principles of an object model; its components,

variables, and the language used for writing rules.

A complete ocean model in the VEW is built by a range of integrated applications

shown in figure 4.1. VEW Designer is the first, and is used to develop the particles

and chemicals, and their accompanying variables and rules. The rules are composed of

statements, mathematical functions, the special-purpose functions defined in the previ-

ous chapter, and a range of variable types.

VEW Designer encapsulates the modelling language, enforcing the semantics by

limiting what the user can select or create.

4.1 Functional Groups and Functions

A functional group pulls together a set of functions that together define the behaviour

of all plankton that are members of that functional group. Each functional group has

functions that define what the functional group does, and an internal state defined by

a set of variables. It may also have associated parameters.

A function consists of a set of rules. The end purpose of these rules is to update

49
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Figure 4.1: The Model Building Process

the state variables of a particle, using a combination of ambient physical and chemi-

cal properties, the functional group’s own parameters, and previous values of its state

variables.

Functions can also use local variables to split up large rules, or to re-use a result

within that function. Sub-functions are like functions but can additionally export a

result so that all functions can read that result as soon as it is calculated.

4.2 The State of the Simulation

The state of a simulation is defined by the following:-

• The physical properties of each layer in the water column (density, temperature,

etc), and the turbocline depth.

• The concentrations of each chemical in each layer of the water column, and any
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variables the user has associated with a chemical.

• The state variables of every particle in the water column, including its depth.

4.2.1 Ordering of rules

In each timestep, a set of rules is executed; the rules within the set are defined by the

type of the particle being updated, and its current stage. Variables can only be written

to once in each timestep, and for state variables, the effect of writing is delayed until

the end of the timestep (buffering). This property is enforced by the user interface.

Planktonica aims to make the order of rules, functions and sub-functions irrelevant.

However, the order in which change and pchange functions are called within the set of

rules is significant when two statements that each cause a stage change. In this case,

the stage assumed by a particle at the end of the timestep is the most recent of the stage

changes (i.e., the last stage change in the list of rules).

In the case of probabilistic stage changes, the changes are treated in order, hence

if the following two commands are performed in order on a particle that initially has a

sub-population size of c:-

pchange(Stage1, p)

pchange(Stage2, q)

then the result is that cp individuals assume Stage1, and c(1− p)q assume Stage2.

It may be argued that the ordering of all rules should be irrelevant, reducing the

potential for error. If the two pchange rules above existed in different functions, then

their order could easily be overlooked.

However, the solution would be to combine all the stage changes, probabilistic or not,

into one rule that specified the stage in the next timestep. This would have an adverse

effect on the modularity of the model, since the stage changes associated with different

aspects of plankton behaviour, (for example, old age, predation, infant mortality and

energy loss) would need to be combined into one rule. This would provide the simplicity
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of order-free rules, but at the cost of removing model modularity when considering

changes in stage.

The choice has been made to promote modularity and allow the user to write multiple

stage changes, each in the function most relevant to the stage change. The cost is that

the user must be aware that stage changes are executed from top to bottom through

the sub-functions, then top to bottom through the functions.

4.2.2 Buffering

The buffering of variables ensures that the order in which the particles are updated does

not give an artificial advantage to any plankton. For example, when plankton compete

for a limited supply of nutrients, it is important that the nutrients are not absorbed in a

‘first-come first-served’ way, such that the first plankter updated has a higher likelihood

of absorbing nutrient than those updated afterwards. The use of buffering allows certain

generic corrections, such as depletion handling, to be carried out between timesteps as

described in section 3.5.

Timesteps are distinct; the state of the simulation changes only at the boundary

between timesteps. This provision aims to make future parallelisation of the simulation

code straightforward.

4.3 Variable Types

An object model consists of functional groups. Each functional group contains functions

and sub-functions, and each of those contains rules similar to mathematical equations.

To construct these rules, a range of variable types are required. The different variable

types and their scopes are shown in figure 4.2, and are described below. Note that the

user never sees the physical or biological layer structures; variables are indexed only by

numerical depth.

An individual in the simulation has a set of state variables, and a set of parameters.

It has a set of rules that define its behaviour, which are segmented into functions and sub-
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Figure 4.2: Variable types and their scope

functions. Local variables may store values between two rules, and exported variables

can be assigned in a sub-function, and used within any function. Variety-based variables

are used primarily for allowing a particle to target a set of populations, defined by variety

and stage, for ingestion.

The variables types for biology are described in the following sections. By way of

introduction, the following sequence of steps describe how a user should decide what

variable type is required, when introducing a new variable, or using an existing one.

1. Is the user creating a new variable, or referring to a variable already provided

within the simulation? If a new variable is to be created, move to step 6.

2. Visible irradiance, full irradiance, density, salinity, or temperature are the physics
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variables in the particle’s ambient (local) environment.

3. If the variable is a concentration of a chemical the user has added, then the variable

is a chemistry variable.

4. The turbocline depth, MLDepth is a column variable.

5. The timestep size, 4t, and other built-in constants such as π, are system vari-

ables.

6. Does the variable apply purely to the individual being updated, or should there

be a separate instance of the variable for each of a set of particle types? If the

latter, the variable is variety-based - move to step 11.

7. Is the variable a constant property of the individual being updated? If so, it is a

parameter.

8. Is the variable used to store a value for use in the same function, within the same

timestep? If so, it is a local variable.

9. Is the variable to be used in more than one function, but within the same timestep?

If so, use an exported variable, and create it within a sub-function.

10. Is the variable a property of the individual that changes each timestep? Is it

necessary to recall values from previous timesteps? In either case, a state variable

should be used.

11. The variable is variety-based: should it define a set of particle-types, for example,

to be ingested? If so, then it is a variety iterator.

12. Should the variable contain a constant value for each member of a variety-iterator?

If so, it is a variety-based parameter.

13. Is the variety-based variable used to store a set of values, one for each member of

a variety-iterator, which is to be read only in the same function, within the same

timestep? If so, it is a variety-based local variable.
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14. Finally, if a state variable is required for each member of a variety-iterator, then

create a variety-based state variable.

.

4.3.1 State Variables

State variables are created at the functional group level. They define the state of an

individual. They are buffered, so when they appear on the left hand side of a rule, the

effect of that assignment is delayed until the end of the timestep. When they appear

on the right hand side of a rule, the variable’s value is that at the beginning of that

timestep. The reason they are buffered is so that the order of reads and writes on a

variable is irrelevant.

State variables also have a history, meaning that it is possible to retrieve the value

of an internal state variable from earlier timesteps. The user specifies the size of the

history when creating the variable. Such history-based state variables can also be used

to store values of elements that have no history, for example physical properties like

temperature.

Hidden Generic State Variables

A few state variables are generic and exist for all plankton. Some of these are hid-

den, namely stage, type, and count which are the growth stage, variety type and sub-

population size of the particle respectively. These cannot be read or written to, but stage

and count are changed indirectly by use of the metamodel API functions described in

chapter 3. The sub-population size is kept hidden to force the user to think in terms

of individuals rather than a sub-population, which is a metamodel feature. The stage

variable stores the growth stage in an internal format, which is better exposed through

an interface menu than by making the variable visible. Similarly, the type variable is

meta-data about a particle, used behind the curtain primarily for system calls such as

ingest, and also for particle management. The user need not be aware of this variable

when writing rules.
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An additional hidden variable, Crelease is added for each chemical C that the user

introduces. This is used purely for keeping track of chemicals released to the environment

by the particle. It is hidden (i.e., cannot be referred to by the user) to ensure conservation

of chemicals; the user cannot release chemicals to the environment without using the

release special function, thus the kernel controls transfer of chemicals between particles

and the environment. Since the Crelease variable is not changed behind the curtain, it is

not necessary to expose it; this differs from the Cuptake variable described below, which

might be changed by the metamodel’s depletion prevention.

Read-Only Generic State Variables

The Cuptake variable, which exists for each chemical C, is visible to the user, but read-

only; the user can only write to it indirectly using the uptake special function. This is

because Cuptake has a special purpose for handling chemical depletion, and all changes

to it must be logged behind the curtain. Reading the Cuptake variable gives the amount

of chemical gained by uptake in the previous timestep, which may have been adjusted

if chemical depletion occurred. See section 3.3.2.

Standard Generic State Variables

Finally, some generic variables can be read and written. These are the depth of the

particle, z and the internal pool Cpool for chemical C. Note that Cpool is not automatically

affected by the release or uptake functions. While it may seem intuitive to reduce

the chemical pool automatically whenever chemical is transferred between the particle

and its ambient environment, forcing this behaviour would prevent certain biological

or chemical processes from being modelled. For example, some plants can increase the

concentration of an internal chemical pool, perhaps using other chemicals they have

absorbed. When modelling disease, for example, a chemical can by used to represent a

virus that may be contracted and later reproduce within a plankter, thus the amount

released will be more than the amount absorbed.

Therefore, the user has full control over the Cpool variables. When a plankter is
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ingested by a predator, the predator automatically absorbs all the chemicals from the

prey’s pools into its own chemical pools.

4.3.2 Parameters (Constants)

A parameter is a named constant shared between all the members of a functional group.

The VEW Controller allows many instances of each functional group to be created, and

allows the parameter values in some instances to be different than in others - see the

description of biodiversity in section 3.4.3.

4.3.3 Local Variables

The user can break down a complex equation or rule into a number of simpler steps,

storing the values in local variables. Such local variables are provided for this reason,

and exist only within the scope of a single function or sub-function.

4.3.4 System Variables

These variables can be considered as meta-data for the simulation, for example, the size

of the timestep which is represented by (4t).

4.3.5 Exported Variables

The sub-functions of a functional group are, by definition, executed before the functions

of that group. The user defines a sub-function when the result of some rule is required

in the same timestep. The exported variable is defined within the sub-function for this

purpose: it stores a value which can then be used in the functions executed immediately

afterwards.

For example, suppose X is a plankton state variable which is affected by three

other properties, A, B and C. For each of the three properties, suppose we have two

methods of calculating that property, a1, a2, b1 and so on. For example, it may be the

energy change for a plankton is defined by three processes, photosynthesis, respiration,
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and reproduction, and we have found in the literature two methods of calculating each

process. Rule 4.1 shows a possible definition for X, without using subfunctions.

X = a1 + b2 + c1 (4.1)

If the method of photosynthesis is to be changed from a1 to a2, we would need to

change the rule for X. Sub-functions and exported variables make it possible to express

this rule in the form of rule 4.2.

X = A+B + C (4.2)

where A = a1 (4.3)

B = b2 (4.4)

C = c1 (4.5)

Here, A, B and C are defined as exported variables, each one defined in a sub-

function, but X is defined in a standard function. This causes A, B and C to be

calculated before any standard functions are calculated. Hence, if X is defined within a

standard function and A, B and C within sub-functions, then X can use the exported

variables A, B and C immediately.

One benefit of this approach is that if we want to change the method of photosyn-

thesis from a1 to a2, we only need to change the definition of A - a simpler task than

updating X in the earlier example. Secondly the values A, B and C can be re-used in

any number of functions.

4.3.6 Physics Variables

Referring back to figure 3.3, the built-in physics code exposes a number of ambient envi-

ronment variables. These are read-only variables, and biofeedback is the only mechanism

by which plankton may affect their ambient physical environment.

Physical variables can be logged, but do not have histories. However, their values

can be recorded by assigning them to state variables, which can have histories. This has

a number of uses, for example when modelling particles that have a memory of how the

irradiance has varied over time.
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4.3.7 Chemistry Variables

Recall from figure 3.4 that when a chemical is added, a concentration variable is added

automatically to each layer in the water column. Such chemistry variables are read-only

for reasons discussed; they can only be altered by use of the uptake and release functions.

4.3.8 Column Variables

Column variables are properties of the water column as a whole, including the turbocline

(also called the mixing layer depth) and the forcing environmental data such as sunlight

and wind speed. As new values are read each timestep, writing to them would have no

effect, hence they are defined as read-only.

4.3.9 Variety-based Types

The Lagrangian Ensemble method forbids particle-to-particle interaction. This presents

a challenge when considering ingestion, since particles need to be aware of the concen-

trations and types of the particles they are feeding on. The challenge is to allow the user

to specify that an individual may aim to ingest different varieties, or different stages of

plankton, at different rates. Recall also that rules are written at the functional group

level, whereas the targets for ingestion are defined as varieties (see figure 3.2), and at

the time of writing the ingestion rules, the varieties will not have been defined.

The solution is the provision of variety-based types, which are vectors, where each

element is associated with a population-type indexed by variety and stage. We firstly

define an iteration vector to be a list of such particle-types that an individual may

ingest. A global structure exists behind the curtain which stores the concentrations of

each particle-type, also indexed by variety and stage. The user can create any number of

iteration vectors in Planktonica, and after the varieties have been defined, the user will

select the elements for the iteration vector. Figure 4.3 shows an example configuration

of an iteration vector. By convention all vector variables are overlined.

Recall that the first argument of the ingest function specifies the prey to be ingested

(see section 3.4.5), defined by its variety and stage. The second argument of the ingest
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Figure 4.3: An example of an iterator vector and the global structure

function is an expression that may compute a different answer for each type of prey in

the iterator. An ingest function can thus be considered an iteration for each element, i,

of an iteration vector, where the second argument is a function of i, which defines the

rate of ingestion for population-type i.

In order for the second argument of the ingest function to return a different answer for

each type of prey in the iterator, there must be some identifiers in the second argument

that will be indexed by i in the iteration. Three such variety-based types are provided,

each of which the user must explicitly associate with a variety iterator when they are

created. The first is a variety-based parameter: a constant defining for instance a

separate rate of ingestion for each element in the iterator. The second is a variety-based

state variable, allowing a state variable associated with each member of the iterator to

be maintained. Finally, for convenience, variety-based local variables can be created,

which store an intermediate value associated with each element in the iterator.

Figure 4.4 shows another example configuration; this time the user has defined two

variety iterators of different length, and for each iterator, two more vectors, either vector-

state variables, vector-parameters, or local vectors have been created. When creating

vectors A and B, the user has to explicitly state which iterator they are associated with,

in this case V ∗.
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Figure 4.4: An example of an iterator vector and the global structure

In section 4.5.2, we will describe how such vectors behave when they occur in rules.

4.3.10 Histories

When creating state variables and variety-based state variables, the user may specify

that such variables have a history, and the user can retrieve a value that the variable

held a number of timesteps ago. The size of this history is specified by the user, and

the value of a variable from a number of timesteps ago is retrieved with the expression:

varhist(v, e) (4.6)

Here, v is the variable in question, and e is an expression for the difference between

the current timestep, and the timestep from which to retrieve the value of v. A value

of -1 for e returns the value a single timestep ago, -2 for two timesteps ago, and so on.

Note that the result of e is a real number, and the value used for looking up the history

is the nearest integer i ≤ e.

As the result of e cannot be predicted, it is the user’s responsibility to ensure that

all history lookups are within the range they specified.
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4.3.11 Naming Conventions

The names of variables are under the control of the user. They must begin with a letter

of the alphabet, which may be followed by any number of alpha-numeric characters,

or the underscore character. This is similar to conventional programming languages

such as Java. Within planktonica the first underscore of any variable name causes the

remainder of the variable name to be displayed as subscript.

Vectors are always labelled with an overline, e.g. (V ), and an iterator is labelled

additionally with an asterisk, e.g. (V ∗).

Planktonica forbids the creation of any duplicate variables in a model file, or variables

with the same names as functional groups or chemicals.

4.3.12 Units

Variables and constants have a default value, and units. Concentrations are often writ-

ten in either mMolm−3 or µgm−3 and mistakes regarding these units are common.

Planktonica requires units to be specified for every variable, and also for numerical val-

ues included in rules. Representing units, and checking them is not especially difficult

and has been well studied elsewhere, for example [32]; when building rules, Planktonica

provides a unit checking facility, which informs the user if any inconsistency in units is

found.

4.3.13 Stages

New stages can be created at the user-interface level, and Planktonica ensures they are

named uniquely to each other and to other variables and chemicals in the model. The

user specifies that a function or sub-function is applicable in a set of stages by ticking

the checkboxes for the appropriate stages. Individual rules cannot be set to run in

different stages; if this is required, the rules should be separated into different functions

or sub-functions.

Note that the implementation of stages uses a separate update class that overrides
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a generic update class; this removes the need to perform a comparison for each rule to

determine whether the rule is applicable in the current stage.

4.4 Differential Equations or Rules

Biological behaviour is usually specified by defining the internal state of an organism

over time. As time is continuous, this typically amounts to defining the rate of change

of each state variable via an ordinary or partial differential equation. This is generally

what is seen in the literature.

However when integrating a model, time must be discretised. An alternative way of

defining the biology is to state explicitly the value of each variable in the next timestep, as

a function of its value in the current step. Both mechanisms are provided by Planktonica,

but in some instances we have found the use of rules to be preferable. Consider the

following example for turbulent motion, equation 4.7, and rule 4.8.

dz

dt
=

rnd(MLDepth)− z

4t
(4.7)

dz = rnd(MLDepth)− z (4.8)

These both have the same effect. However equation 4.7 is misleading as it implies

that dz
dt is a rate of change over time, which for turbulence is not the case; it is actually

the change in distance after time 4t. Additionally, the need to divide by the timestep

is far from obvious, requiring the user to predict that when integrating the rule, the

right-hand side will be multiplied by the timestep.

4.5 Building Rules

This section describes the constructs available for building rules in front of the curtain.

These are essentially mathematical constructs, and where behind-the-curtain access is

required, the seven special functions described in chapter 3 are used. A rule is defined

as one of the seven metamodel functions, an assignment, or a conditional execution, as

described below.
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4.5.1 Scalar Assignments

The user can create a scalar assignment of the form

v=e (4.9)

Here, v can only be a state variable, or a local variable. Recall that since state variables

are buffered, v will take the value of the numerical expression e at the beginning of the

following timestep, whereas a local variable will assume the value of e immediately. The

expression e must be scalar; it must return a single result. See section 4.5.5 regarding

numerical expressions.

4.5.2 Variety-based (Vector) assignments

v = e (4.10)

If a vector appears on the left-hand side of a rule, then an iteration occurs, whereby

a separate assignment is performed for each element of the vector. For a given element

index, the expression e is evaluated with respect to the same index, such that all vectors

referred to in e will be indexed identically. Referring back to figure 4.4, consider the

following rule.

A =
(
B ∗ V ∗)+ 1 (4.11)

Importantly, Planktonica enforces that whenever vector terms exist in a rule, they must

all be linked to the same iterator, hence inclusion of C, D or W ∗ would not be permitted

in this rule. Since the vectors here all have an arity of 3, this assignment has the following

meaning:-

A1 =
(
B1 ∗ V

∗
1

)
+ 1 (4.12)

A2 =
(
B2 ∗ V

∗
2

)
+ 1 (4.13)

A3 =
(
B3 ∗ V

∗
3

)
+ 1 (4.14)

Note that the scalar quantity ‘1’ is replicated in each iteration. This is permitted,

as is A = 1, which would cause all elements of A to take the value of ‘1’.
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The left-hand side of a vector assignment can only be a variety-based variable or a

variety-based local variable; variety-based parameters cannot be written to, and iterators

have the special property of both defining which particle-types are to be considered, and

when read they return the concentration of each particle type.

4.5.3 Differential Assignments

Both scalar and vector assignments can be expressed differentially, as mentioned in

section 4.4. These assignments take the form:-

dv

dt
= e (4.15)

At present, Eulerian integration is carried out, meaning the value of v will change

by e 4t at the beginning of the next timestep. As the assignment defines a change, v

cannot be a local variable, or a variety-based local variable; v must either be a state

variable or a variety-based state variable.

4.5.4 Conditional Execution

A conditional statement takes the form:

if b then F1 else F2 (4.16)

Boolean variables do not exist as first-class objects in Planktonica, but boolean

expressions can be used in conditional equations, and here b is a boolean expression.

Note that statements cannot be a part of an iteration, hence b must return a single

result resulting in either statement F1 or F2 being executed once. See section 4.5.6.

Functions F1 and F2 can be either one of the seven metamodel functions, (change,

create, divide, ingest, pchange, release and uptake), or an assignment (scalar or vector),

a differential assignment, or another conditional.

4.5.5 Numerical Expressions

A range of standard mathematical expressions (abs, acos, asin, atan, cos, exp, log,

log10, minus, pow, sin, sqrt and tan) are provided, and behave in the standard way.
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The choice of standard expressions is motivated by Java’s standard maths class. In

planktonica’s interface, addition, subtraction, multiplication and division are specified

in a prefix notation, using the functions add, sub, mul and div.

Random numbers are provided using the rnd function; the implementation used is

the Marsenne Twister [19], which offers better performance than Java’s standard random

number generator, yet offering a very large period of (219937)− 1.

An alternative conditional is also provided, which can occur within another expres-

sion (i.e., inline), and rather than causing a function to execute, it returns one of two

values depending on whether the condition succeeds. It takes the form:-

if b then e1 else e2 (4.17)

Differently to the conditional statements, this conditional function can contain vec-

tors, in both the boolean expression b, and the two expressions. Such terms will be

indexed as demonstrated in section 4.5.2.

The varhist function mentioned provides access to the previous values of variables

that have associated histories. Absolute scalar values can be used in numerical ex-

pressions, and any of the variable types described in this chapter can be read. The

metamodel integrate function described in section 3.4.4 is also available.

Finally, three special purpose numerical expressions reduce vectors to scalars; these

are vAvg, vMul and vSum, which take the whole of a vector, average, multiply, or sum

its elements, and return a scalar result.

4.5.6 Boolean Expressions

Boolean expressions are used in the conditional execution, (section 4.5.4) and inline as

part of a conditional numerical expression. Standard comparison operators are provided

(=, 6=, <,>,≤,≥), which each take numerical expressions as their arguments in the

expected way. Standard logical operators (and, or and not) are provided that take

boolean expressions as their arguments.

Recall that for the conditional execution statement, only one boolean result is per-

mitted, hence none of the numerical expressions must be vectors in such a conditional.
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However, for the conditional numerical expression, (i.e., within an assignment), vectors

are permitted, and the iteration occurs as in section 4.5.2.

Three special boolean operators are provided which reduce vectors to scalars. These

are none, all and some. Given a boolean expression, in which the numerical expressions

may contain vectors, these operators return true if none, every, or at least one of the

iterations through the vectors gave a positive result respectively.

4.6 Chemistry Rules

Chemicals can also have update rules, which are a subset of the rules available for par-

ticles. The important difference is that while particle rules result in the update of an

individual, chemistry rules result in the update of a chemical concentration, and other

user-defined chemical variables within a biological layer. As a result, the following func-

tions and variable types that only apply to particles are not appropriate for chemistry

rules:-

• The seven special function calls (change, create, divide, ingest, pchange, release

and uptake).

• The integrate function, since this involves particle trajectories.

• The variety-based types (variety iterator and variety-based parameters, local vari-

ables, and state variables)

• The variety-based numerical functions, vSum, vMul and vAvg.

• The variety-based boolean functions, all, none and some.

Recall from section 3.3.2 that particle updates cannot write directly to chemistry

concentrations; they can only indirectly affect the chemistry concentrations via uptake

and release. Chemistry rules differ from this: they can directly write to the chemi-

cal concentrations. Moreover the cconc variables are the only variables visible both to
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chemistry and biology rules, and the end purpose of chemical rules is to update this

variable.

The subset of the modelling language that is supported by chemistry rules, is as

follows:-

• Functions and sub-functions can be created.

• Assignments, differential assignments, and conditional assignments are available.

• Chemical state variables are supported, allowing new variables, with a history, to

be introduced to each biological layer.

• Chemical local variables and chemical exported variables can be created, and be-

have equivalently to those of biological rules.

• Parameters for chemistry rules can be created.

• All mathematical functions that do not apply to trajectories or variety-based vari-

ables are available.



Chapter 5

Semantics of Modelling Language

5.1 Introduction

This chapter defines formally the syntax and semantics of the modelling language. The

operational semantics is given in the form of rewrite rules that collectively define how

the state of a simulation is modified by the execution of rules defining the biology and

chemistry of the water column. The notation is modelled on that of the functional

language Haskell [17].

The language for defining chemistry is a subset of that for biology. This is because

the biology is modelled with particles whilst the chemistry is modelled by fields. For

this reason, we focus on the biological modelling language; once this is understood, the

operational semantics of the chemistry modelling language follows straightforwardly.

Recall that biological organisms are instances of some variety and each may have a

number of growth stages. For each variety and each stage there is a sequence of rules

that constitutes the “update” code for all particles that are instances of that variety and

which exist in that stage. The update code is simply a set of rules that will be executed

in sequence by the Planktonica kernel for each such particle. The effect of each rule is

to modify the internal state of the particle. The main objective of this chapter is to

explain formally how this is done.

69
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5.2 Syntax

The biology modelling language includes the primitive functions outlined in Chapter 3

for supporting the Lagrangian Ensemble metamodel, and support for variety iterators

and variety-based variables (vectors) linked to them. Figure 5.2 summarises the syntax

of the biological modelling language. Id denotes the set of variable identifiers, including

overlined variety-based identifiers, and subscripted identifiers. Num denotes the set of

double-precision floating-point constants. Observe that multiplication of two expressions

is represented by their juxtaposition: x y is interpreted as x×y, for example. The syntax

of an “update” script is defined by Rules in Figure 5.2.

5.3 Model State

Model integration proceeds in timesteps. The operational semantics detailed below

defines how the state of the model is updated during a timestep by the execution of one

or more rules.

Chemicals and particle concentrations exist as continuum fields and these are mod-

elled as concentrations at each point in a one-dimensional chemistry grid. A separate

grid, with different internal structure, is used to model additional fields for the physics.

The physics is built in and cannot be changed by the user. The two grids have different

internal structure; importantly, the chemistry grid is regular, with L grid points and

grid spacing h (metres).

The chemistry grid implicitly defines “layers” in the water column, with the grid

points sitting at the centres of the various layers. When thinking of particles we will

often refer to its ambient (chemical) environment as being its associated “layer” in the

chemistry grid.

The dynamic state of a model is defined by the following:-

• The state of the physics grid, including the turbocline

• The state of the chemistry grid
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Rules ::= Rule ′;′ | Rule ′;′ Rules

Rule ::= Assign|
′d′ Id
′dt′

′=′ Expr |
′if ′ BExpr ′then′ Rule ′else′ Rule |
′uptake′ ′(′ Id ′,′ Expr ′)′ i|
′release′ ′(′ Id ′,′ Expr ′)′ |
′ingest′ ′(′ Id ′,′ Expr ′)′ |
′change′ ′(′ Id ′)′ |
′pchange′ ′(′ Id ′,′ Expr ′)′ |
′divide′ ′(′ Expr ′)′ |

Create

Assign ::= Id ′=′ Expr

AssignList ::= Assign | Assign ′,′ AssignList

Create ::= ′create′ ′(′ Expr ′,′ Id ′)′ |
′create′ ′(′ Expr ′,′ Id ′)′ ′with′ AssignList

Expr ::= Num |

Id |

Id′[′Expr′]′ |
′if ′ BExpr ′then′ Expr ′else′ Expr |

Expr Op Expr |

Expr Expr |
Expr
Expr |

ExprExpr |

V Op ′(′ Expr ′) |

Prim ′(′ Expr ′)′ |

Prim2 ′(′ Expr ′,′ Expr ′)′ |
′integrate′ ′(′ Expr ′)′

Figure 5.1: Particle modelling language syntax (part 1)
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BExpr ::= Expr Comp Expr |
′not′ ′(′ BExpr ′)′ |

BExpr BOp BExpr |

V BOp ′(′ BExpr ′)′ |

Prim ::= ′abs′ | ′acos′ | ′asin′ | ′atan′ | ′cos′ |
′exp′ | ′log′ | ′log10′ | ′rnd′ | ′sin′ |
′sqrt′ | ′tan′

Prim2 ::= ′max′ | ′min′

Op ::= ′ +′ | ′−′

Comp ::= ′=′ | ′ 6=′ | ′ >′ | ′ <′ | ′ ≥′ | ′ ≤′

BOp ::= ′and′ | ′or′

V Op ::= ′vAvg′ | ′vMul′ | ′vSum′

V BOp ::= ′all′ | ′some′ | ′none′

Figure 5.2: Particle modelling language syntax (part 2)
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• The state of each particle in the simulation

.

Note that there may be additional static information (e.g. the rules for different

varieties and stages, a pigment’s action spectra etc.) but as none of this can be modified

during execution we exclude it from the discussion.

5.3.1 Physics

The set of physics variables at each point on the physics grid is given by:

PhV ars = { Temp,

Density,

Salinity,

FullIrrad,

V isIrrad }

The values assumed by these variables at each grid point are maintained in a physics

environment variable which is a function of type PEnv = Depth→ PhV ars→ Double,

that delivers the value of variable p ∈ PhV ars at a specified depth. Note that in one

dimension Depth is synonymous with Double. Note also that we do not work explicitly

with grid points in the physics.

For example, ρphys 0.7 Temp delivers the temperature (in ◦C) at depth 0.7m in the

physics environment (grid) defined by ρphys.

5.3.2 Chemistry

The values of the chemistry variables for each chemistry grid point (layer) are main-

tained in a chemistry environment. Recall that the user can define new chemistry by

the introduction of named chemicals and associated state variables, local variables and

parameters. Recall also that pigments are simply modelled as chemicals with action
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spectra. We therefore do not need to talk about pigments explicitly. Define:

Chem The set of chemical names

Pig ⊆ Chem The set of pigment names

CState The set of chemical state variable identifiers

CLocal The set of chemical local variable identifiers

CConst The set of chemical parameter names (constants)

Recall also that state variables (here members of CState) may have associated his-

tories, meaning that their value a specified number of timesteps earlier can be retrieved.

For a variable v with an associated history, a reference to v itself in the language refers

to the value in the current timestep; v[−1] represents the value in the previous timestep,

and so on.

The history associated with a variable v is stored internally in a vector which we

shall consistently label v′. The elements of these internal vectors can be accessed via a

vector indexing operator (↓). By convention, history vectors are indexed internally from

-1 (downwards), in keeping with the source language. A special element (v ↓ 0), which

cannot be accessed directly by the user, is used to store the value that the variable will

assume in the following timestep. We overload the meaning of ↓ so that v ↓ i := e has

the effect of assigning the ith element of v to the value of e.

Different state variables may have different history lengths so we define Hv to be the

history index set for v; this includes the special index 0. For example, a variable v with

a three-timestep history will have a history index set Hv = {0,−1,−2,−3}. Thus,

CState′ = ∪v∈CState { v, v′ } ∪ {cconc | c ∈ Chem}

which extends CState to include the history vectors. Note that the index set (Hv)

associated with v is specified by the user when v is declared in the Planktonica interface.

Introducing a new chemical c ∈ Chem automatically introduces a chemical concen-

tration variable Cconc at each chemistry grid point. Thus, the set of variables defined in

a chemistry environment (grid) is given by

CV ars = CState′ ∪ CLocal ∪ CConst
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A chemistry environment has type CEnv = [CEnv′] where CEnv′ = CV ars →

Double and where [a] denotes the type “list of a”. CEnv thus comprises a list of value

mapping functions, one for each chemistry grid point. For convenience, if ρchem is a

chemistry environment, we will write ρchem,i to denote the ith element of the list ρchem,

which is the value mapping function for grid point i, 0 ≤ i ≤ L− 1. It is also convenient

to be able to index the chemistry environment by depth, so we define ρchem@z to mean

ρchem,bz/hc where h is the chemistry grid spacing.

For example, if Nitrate ∈ Chem then ρchem,12 (Nitrateconc) denotes the concen-

tration of Nitrate in layer 12 of the chemistry grid whose state is given by ρchem. In

general, parentheses around arguments in function applications may be optionally omit-

ted (currying) where the meaning is unaffected.

Note that differently to the rules for particles which can only indirectly change

chemical concentrations via built-in functions, chemistry rules can directly write to

cconc variables.

5.3.3 Biology (Particles)

Each particle represents a sub-population of some variety. Varieties are also instances

of functional groups, but this is unimportant from the point of view of the semantics

as the rules for all varieties of the same functional group are the same. Such varieties

differ only in their parameterisation.

As with chemistry, new varieties (functional groups) can be introduced by the user,

each having an associated set of state variables, local variables and parameters. Let Nv
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denote the number of varieties and define for each variety 1 ≤ i ≤ Nv:

Statei The set of state variable identifiers

Locali The set of local variable identifiers

Consti The set of parameter names (constants)

V Iteri The set of variety iterator identifiers

V Statei The set of variety-based state variable identifiers

V Locali The set of variety-based local variable identifiers

V Consti The set of variety-based parameter names (constants)

These sets contain all the variables defined by the user. Behind the scenes additional

variables are implicitly defined in terms of these, as we now define.

Recall in section 4.3.5, exported variables were described. For the semantics, these

can be considered equivalent to local variables, since the segmentation of rules into

functions and subfunctions is purely for model-building convenience; in the semantics

we ignore the segmentation and deal with a single list of rules, thus making export

variables equivalent to local variables.

Internally, each variety is uniquely numbered so, for convenience, we define the index

set V ar = { 1, 2, ..., Nv } to index the various varieties.

Variety-based variables (prefix ‘V ’ above) are stored internally as vectors of (scalar)

double-precision floating-point numbers. These will be referred to as “variety vectors”.

The vector indexing operator (↓) previously used for indexing histories will also be used

to index variety vectors. However, variety vectors are indexed from 1. Members of

V State additionally have a history for each element of its internal variety vector – in

other words, it is represented internally by a two-dimensional structure (a vector of

vectors).

For variety v ∈ V ar let Sv be the number of growth stages associated with v.

Internally, the stages are numbered 1, ..., Sv, although the user refers to them by name.

The names for the various stages are specified in the Planktonica user interface when

they are defined. We will assume a function S : V ar → Id → Int for mapping these

stage names to numbers.



CHAPTER 5. SEMANTICS OF MODELLING LANGUAGE 77

Each variety automatically has associated with it default variables denoting its va-

riety, stage number, cell count and depth (with history), together with pool, uptake

and release variables for each chemical in the set Chem. The latter may also have

associated histories. The stage and count variables both have “current” timestep and

“next timestep” variants as they may be updated indirectly via the special metamodel

functions. As the stage and count variables have no histories, we include the special

identifiers stagenew and countnew to store the values that stage and count will assume

in the following timestep.

All particles have a depth variable, and a depth history. The variety, stage and

count variables are not directly accessible by the user – they can only be modified via

the metamodel functions defined in Chapter 3. The uptake and release variables can

be read by the user but only updated via the metamodel functions. The depth variable

can be read and written directly by the user. The variable z denotes the current depth

and z′ its history vector with associated index set Hz. The default internal variables

associated with all particle states are thus:

Hidden = {stage, stagenew, count, countnew} ∪⋃
c∈Chem{crelease }

ReadOnly =
⋃
c∈Chem{cuptake, c′uptake, } ∪⋃
t∈V Iter{tingest, t′ingest, } ∪

The internal vectors c′uptake, c′release will again have associated history index sets.

For each variety iterator t ∈ V Iteri, there is an associated ingest vector which is

used to store the number of individuals of each target variety/stage specified in t. The

ingest vectors are maintained automatically, and give the number of individuals of each

variety that the particle ingested in the previous timestep, or a timestep in the history

represented by t′ingest. This ingest vector is automatically created by Planktonica with

the same arity as the iterator vector with which it is associated.

As an implementation note, the ingestion vector contains only pointers to a single

vector for each particle, which records the number of individuals of each variety that the

particle ingested in the previous timestep. The ingest variables also have an associated
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history, t′ingest.

Again, recall that state variables (those in both Statei and V Statei above) have

associated histories. Thus, define

State′i = ∪s∈Statei { s, s′ } ∪ {z, z′}

V State′i = ∪v∈V Statei { v, v′ }

where the valid indices of s′ and v′ are given by their respective index sets. For

variety v, therefore, the set of internal identifiers associated with v1 is given by

PV arsv = Hidden ∪ ReadOnly ∪ Ingv ∪ State′v ∪ Localv ∪

V State′v ∪ V Iterv ∪ Constv ∪ V Localv ∪ V Constv

It is also convenient to define universal sets State, Local, Const, V Iter, V State,

V Local, V Const, taken over all varieties. For example State = ∪1≤i≤NvState
′
i, Local =

∪1≤i≤NvLocali, and so on. Recall that members of V State, V Local and V Const will be

explicitly linked to some variety iterator in V Iter; this is enforced when the variables

are created.

Each particle of type v in the simulation has an associated state which is represented

in the rewrite rules as a function of type PStatev = PV arsv → Double, i.e. a function

that maps an identifier (∈ PV arsv) to its value.

Although the different particle varieties are treated separately here with respect to

their state it is convenient to define a particle state superclass, PState, to which each

PStatei, 1 ≤ i ≤ Nv, belongs2. The state of all particles in a simulation can then be

considered collectively in the form of a single particle state list of type [PState].

The turbocline depth is computed by the physics code behind the curtain at the

beginning (equivalently the end) of each timestep. In the rules that follow the turbocline

depth parameter will consistently be named δ. It corresponds to the predefined variable

MLDepth that is referred to by the user.
1This means that the variables identified will have a binding in the internal state of each particle

that is an instance of variety v.
2The Planktonica interface ensures that the rules for one variety cannot illegally access variables

associated with another.
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Finally, note that the following global constants are also defined:

h The chemistry grid spacing in metres

L The number of grid points in the chemistry grid

equivalently the number of layers

4t The timestep size in hours

5.4 Rewrite Rules: Biology

The operational semantics is defined by rewrite rules. The objective is to describe the

way in which the state of each particle is updated via the execution of the various rules

associated with it, or more specifically, the rules associated with the variety of which it

is an instance, and its stage. It is important to understand that a considerable amount

of work is also performed between timesteps. However, as this is performed behind

the curtain, we focus on formalising the state updates that are under direct control of

the user. These updates apply exclusively to the internal state of the various particles,

although new particles may be formed (by calls to pchange and create). They may in

turn cause changes in both chemistry and physics variables, but these updates take place

only between timesteps and behind the curtain. These will be described in Section 5.6.

In what follows, if v is a variety-based state variable then |v| will be used to denote

its arity – equivalent to the length of the variety iterator to which it is linked.

5.4.1 Particle List Update

Given the mixed layer depth (δ), the state of the physics and chemistry grids, i.e. the

physics and chemistry environments ρphys and ρchem, and the list of particle states, the

function U∗ : Depth → PEnv → CEnv → [PState] → ([PState], [PState]) defines

the particle updates in terms of an individual particle update function U : PEnv →

CEnv → PState→ (PState, [PState]). The function returns the modified state of the

input particles and a (possibly empty) list of new particles.

U∗ δ ρphys ρchem [σ1, ..., σn] = ([σ′1, ..., σ
′
n] , [ν1, ..., νn])

where (σ′i, νi) = U σ1 δ ρphys ρchem
(5.1)
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Note that the order in which particles are updated is unimportant.

Implementation Note: While the semantics treats the particles as a flat list, in

practice data structures are used which allow efficient iteration of particles of a given

stage and variety, in each layer of the column. This arrangement of data structures

improves the efficiency of the various operations that occur behind the curtain between

timesteps.

5.4.2 Rule Execution

The update of a single particle involves executing a sequence of rules, in the order in

which they are written. This execution is defined by a function E∗ : Rules→ PState→

Depth→ PEnv → CEnv → ([PState], [PState]). The rules to be executed are defined

by the variety and the stage of the particle being updated. A function R (unspecified)

is assumed, that returns the list of rules associated with a given variety and stage.

It is convenient to consider the rules at the syntactic level to simplify the exposition.

In practice, the simulation engine executes compiled versions of each rule, but to describe

what the engine does we will write the rules exactly as they appear to the user in the

output from VEW Documenter.3 We use double square brackets ([[ and ]]) to delimit

syntactic objects. The various syntactic object types referred to are defined in Figure 5.2.

U σ δ ρphys ρchem = E∗ (R (σ var) (σ stage)) σ δ ρphys ρchem (5.2)

Recall that v′ internally stores the history associated with v. The execution of a

sequence of rules is defined in terms of a function E : Rule → PState → Depth →

PEnv → CEnv → (PState, [PState]) for processing one such rule.

E∗ [[R1; ...;Rn; ]] σ0 δ ρphys ρchem = (σn, [ν1, ..., νn])

where (σi, ηi ) = E [[Ri]] σi−1 δ ρphys ρchem, 1 ≤ i ≤ n
(5.3)

3This will ultimately be how the rules appear in the Planktonica user interface. At present, as

previously discussed, the equations input by the user are rendered slightly differently to the way they

are shown here.
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Note that the rules are invoked in order with the (possibly) modified particle state being

passed down from one rule to the next. Each rule may result in a new particle being

created (via the create and pchange functions). The result therefore includes a list of

new particles (particle states) which will be either empty ([ ]) or singleton for each call

to E.

Note: In the rules that follow it is important to remember that the terms in double

square brackets denote syntactic terms. A variable in the right hand-side of a rule refers

to a variable in the model state, which is itself represented by the physics and chemistry

environments, and the various particle states.

5.4.3 Assignments

Direct Assignments can be carried out on scalar state variables, scalar local variables

and their variety-based equivalents.

An assignment of an expression e to a variable v with an associated history, causes

v ↓ 0 to be assigned the result of evaluating e. Recall that v ↓ 0 is the value that will

be used to update v for the next time step. No new particles are created.

If σ represents the state of a particle then σ{x := v} denotes the state σ updated in

such a way that (σ{x := v}) x = v. Thus, for v ∈ ({ z } ∪ State):

E [[v = e]] σ δ ρphys ρchem =
(
σ {v′ ↓ 0 := ε [[e]] σ (σ z) δ ρphys ρchem}, [ ]

)
(5.4)

The function ε : Expr → PState→ Depth→ Depth→ PEnv → CEnv → Double

computes the value of a given expression given the particle state, its depth, the mixing

layer depth and the physics and chemistry environments. The particle depth is a separate

parameter as the particle may pass through several layers in the same timestep. The

binding for z (depth) in the particle state (i.e. (σ z) above) represents the depth of the

particle in the current timestep.

An assignment may be performed on a local variable w, in which case w assumes
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the value of e immediately. Thus for w ∈ Local:

E [[w = e]] σ δ ρphys ρchem

= (σ {w := (ε [[e]] σ (σ z) δ ρphys ρchem)}, [ ])
(5.5)

An assignment to a variety-based state variable v ∈ V State requires an iteration for

each element of v. For each iteration, i, 1 ≤ i ≤ |v|, the value for (v′ ↓ i) ↓ 0 (the value the

ith element of v will assume in the next timestep) is computed by the function ε. Recall

that variables in V State are represented internally as two-dimensional structures (each

as a vector of vectors). The function ε differs from ε in that any variety-based variables

will be indexed using the additional parameter (i above). Thus, for v ∈ V State:

E [[v = e]] σ δ ρphys ρchem

= (σ {(v′ ↓ i) ↓ 0 := (ε [[e]] i σ (σ z) δ ρphys ρchem) , 1 ≤ i ≤ |v|}, [ ])
(5.6)

An assignment to a local variety-based variable w requires a similar iteration, with

the results being immediately applied to each element. For w ∈ V Local:

E [[w = e]] σ δ ρphys ρchem

= (σ {w ↓ i := (ε [[e]] i σ (σ z) δ ρphys ρchem) , 1 ≤ i ≤ |w|}, [ ])
(5.7)

5.4.4 Differential Assignments

Assignments to state variables can also be written in differential form, where the right-

hand side defines a rate of change. At present a straightforward Eulerian integration

step is performed. For v ∈ State:

E
[[
dv
dt = e

]]
σ δ ρphys ρchem

= (σ{v′ ↓ 0 := v +4t (ε [[e]] σ (σ z) δ ρphys ρchem)}, [ ])
(5.8)

A similar rule applies for variety-based variables, but recall that the internal vector

v′ is two-dimensional. Thus, for v ∈ V State:

E
[[
dv
dt = e

]]
σ δ ρphys ρchem

= (σ{(v′ ↓ i) ↓ 0 := v ↓ 0 +4t (ε [[e]] i σ (σ z) δ ρphys ρchem) , 0 < i ≤ |v|}, [ ])
(5.9)
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5.4.5 Conditional Execution

E [[if B then R else R′]] σ δ ρphys ρchem

= if β [[B]] σ (σ z) δ ρphys ρchem = tt then E [[R]] σ δ ρphys ρchem

else E [[R′]] σ δ ρphys ρchem

(5.10)

The boolean function β : BExpr → PState → Depth → Depth → PEnv →

CEnv → {tt, ff} computes either tt (true) or ff (false).

5.4.6 Chemical Uptake

A request to uptake an amount a (in micrograms) of a chemical c ∈ Chem causes the

uptake variable for c to be increased by a. Several uptakes may occur for the same

chemical during a timestep, in which case they are accumulated. Thus,

E [[uptake(c, e)]] σ δ ρphys ρchem

= (σ{c′uptake ↓ 0 := cuptake + (ε [[e]] σ (σ z) δ ρphys ρchem)}, [ ])
(5.11)

Note that the condition that c ∈ Chem is enforced by Planktonica when the rule is

entered.

5.4.7 Chemical Release

Chemical release operates similarly to uptake:

E [[release(c, e)]] σ δ ρphys ρchem

= σ{c′release ↓ 0 := crelease + (ε [[e]] σ (σ z) δ ρphys ρchem)}, [ ])
(5.12)

5.4.8 Ingestion

For a particle that ingests members of a target set (specified by variety and growth

stage), the ingestion is defined to take place over a trajectory defined by the depths

of the particle in the current and previous time steps, i.e. z and (z ↓-1) respectively.

The first argument of ingest is always a variety iterator. The second argument is

an expression for computing the ingestion rate. This expression is computed for each

element index in the variety iterator (forced iteration). If the expression refers to a
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variety-based variable (these will always be linked to the variety iterator), this variable

will be indexed accordingly.

In the following rewrite rule zmax and zmin define the two extremes of the trajectory.

For the purposes of ingestion, the direction of travel is not important. It is important

to note that the ingesting particle only moves through a proportion of the topmost and

bottommost layer the distances ptop and pbot, but travels through the entirety of each

intermediate layer - see Figure 3.4.4.

The ambient environment of the particle changes as it moves, hence the physical

and chemical environments ρphys and ρchem are indexed with the depth of the particle

along its trajectory. The number of individuals of each target type ingested along the

trajectory is delivered in the variable xingest; this is linked to the target variety iteration

variable x as previously described. Thus, for x ∈ V Iter,

E [[ingest(x, r)]] σ δ ρphys ρchem =

(σ{(xingest ↓ i) ↓ 0 := Gi, 1 ≤ i ≤ |x|}, [ ])

where Gi = sh×4t
zmax−zmin

× (topi +midi + boti) where

topi = ptop ε [[r]] i σ zmax δ ρphys ρchem

boti = pbot ε [[r]] i σ zmin δ ρphys ρchem

midi =
∑lmax−1
l=lmin+1 ε [[r]] i σ (l h) δ ρphys ρchem

ptop = lmin − zmin
h

pbot = zmax
h − lmax

zmax = max (σ z, σ (z ↓ -1))

zmin = min (σ z, σ (z ↓ -1))

lmin = b zmin
h c

lmax = b zmax
h c

(5.13)

5.4.9 Stage Changes

Stage changes are straightforward. Recall the function S which maps growth stage

names to stage numbers for a given variety.

E [[change(s)]] σ δ ρphys ρchem = (σ{stagenew := S (σ var) s}, [ ]) (5.14)



CHAPTER 5. SEMANTICS OF MODELLING LANGUAGE 85

Proportional stage changes cause a new particle to be created whose cell count is the

stated proportion of that of the parent. The parent cell count is reduced accordingly.

The new particle (state) is formed by cloning the parent prior to adjusting the cell count.

A function clone is assumed which makes a copy of a given particle state.

E [[pchange(p, s)]] σ δ ρphys ρchem =

( σ{countnew := c}, [ (clone σ){countnew := c′} ] )

c = count× (1− (ε [[p]]σ (σ z) δ ρphys ρchem))

c′ = count× (ε [[p]]σ (σ z) δ ρphys ρchem))

(5.15)

5.4.10 Particle Division

The divide function causes the sub-population size to be multiplied by specified amount.

No new particles are created.

E [[divide(e)]] σ δ ρphys ρchem =

(σ{countnew := count× (ε [[e]]σ (σ z) δ ρphys ρchem)}, [ ])
(5.16)

5.4.11 Particle Creation

Recall from Section 3.4.1 that particle creation causes a clone of the parent to be created,

with a specified sub-population and stage. The new particle may optionally be modified

by a series of assignments. In this case the assignments are effected by the function E∗.

The assignments cannot create new particles so the second component returned by E∗

will be [ ].

E [[create (x, s)]]σ δ ρphys ρchem

= (σ, [ (clone σ){ stagenew := S (σ var) s,

countnew := ε [[x]]σ (σ z) δ ρphys ρchem} ])

(5.17)



CHAPTER 5. SEMANTICS OF MODELLING LANGUAGE 86

E [[create (x, s) with {v1 = e1, ..., vn = en}]] σ δ ρphys ρchem

= (σ, [σ′])

where (σ′, ν) = E∗[[v1 = e1; ..., vn = en; ]] σ′′ δ ρphys ρchem

σ′′ = (clone σ){

stagenew := S(σ var) s,

countnew := ε [[x]]σ (σ z) δ ρphys ρchem}

(5.18)

5.4.12 Expression Evaluation

The function ε : PState → Depth → Depth → PEnv → CEnv → Double computes

the value of an expression with scalar type, as previously described. It is defined in

terms of a similar function ε which is used to implement forced iteration. ε takes an

additional argument, the variety index (type Int), which is used to index any variety-

based variables in the given expression. In the case of scalar expression evaluation,

where there is no iteration at the topmost level, an index of 0 is passed to ε. Thus:

ε e = ε e 0 (5.19)

The rules for ε now follow. Note:

• The particle depth is defined by an additional parameter (ψ), rather than by σ z

as the expression may be being computed along a trajectory.

• Particles may only access the concentration variables cconc, c ∈ Chem in the chem-

istry grid. The other chemistry variables may only be accessed by the correspond-

ing chemistry rules (see Section 5.5).

• The only variables that can be indexed by history are state variables (State and

V State) including the particle depth (z), the chemical uptake variables for each

chemical cuptake, and the ingestion variables, tingest; the auxiliary function H per-

forms history indexing. The index is an expression; when computed it is rounded

down to the nearest integer.
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• A reference to a variety-based variable (vector) causes the corresponding vector

to be indexed (indexing operator ↓). Note that indexing a vector at 0 would

correspond to an error, but the Planktonica user interface ensures that scalar

expressions contain no vector references at the topmost level4; in this sense all

models are correctly typed.

• Condition expression evaluation is defined in terms of the boolean function β.

This is analogous to ε in that it carries an integer index that is used to index any

variety-based vector variable.

• The three vector operators (vAvg, vMul and vSum) reduce vectors to scalars.

The function arity (unspecified) computes the arity of a given expression, i.e. the

arity of its component vector(s). Note that all vectors appearing at the top level

in an expression have the same arity by construction as they must all be linked to

a common variety iterator. The arity of a scalar expression is defined to be 0, in

which case the three functions treat the scalar as though it were a vector with a

single element. Thus, for example, vAvg(e) is defined to be e if e is scalar.

• The rule for integrate is similar in structure to that of ingest. For a particle with

trajectory (zmin, zmax) the expression integrate(e) is interpreted as

∫ zmax

zmin

f(z) dz

where f(z) = e. The integration is, of course, formed by a finite sum because of

the discretisation of the water column.

• The basic mathematical operators have their usual meaning, so the rules are omit-

ted. Recall, however, that juxtaposition means multiplication. The usual mathe-

matical associativity and precedence rules apply.

ε [[x]] i σ ψ δ ρphys ρchem = x, x ∈ Num (5.20)

4A scalar-valued expression may, of course, make use of the vector operations vAvg, vMul and vSum

but their vector arguments will not be at the topmost level.
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ε [[MLDepth]] i σ ψ δ ρphys ρchem = δ (5.21)

ε [[v]] i σ ψ δ ρphys ρchem = ρphys ψ v, v ∈ PhV ars (5.22)

ε [[cconc]] i σ ψ δ ρphys ρchem = (ρchem @ψ) cconc, c ∈ Chem (5.23)

ε
[[
v[e]
]]
i σ ψ δ ρphys ρchem

= H[[v]] bε [[e]] i σ ψ δ ρphys ρchemc σ, v ∈ (Depth ∪ State ∪ V State)
(5.24)

ε [[z]] i σ ψ δ ρphys ρchem = ψ (5.25)

ε [[v]] i σ ψ δ ρphys ρchem = σ v, v ∈ (State ∪ Local ∪ Const) (5.26)

ε [[v]] i σ ψ δ ρphys ρchem

= (σ v) ↓ i, v ∈ (V Iter ∪ V State ∪ V Local ∪ V Const
(5.27)

ε [[vAvg(e)]] i σ ψ δ ρphys ρchem

= if arity(e) = 0 then ε [[e]] σ ψ δ ρphys ρchem,

else ε[[vSum(e)]] σ ψ δ ρphys ρchem

arity(e)

(5.28)

ε [[vMul(e)]] i σ ψ δ ρphys ρchem

= if arity(e) = 0 then ε [[e]] σ ψ δ ρphys ρchem,

else
∏arity(e)
j=1 ε [[e]] j σ ψ δ ρphys ρchem

(5.29)

ε [[vSum(e)]] i σ ψ δ ρphys ρchem

= if arity(e) = 0 then ε [[e]] j σ ψ δ ρphys ρchem

else
∑arity(e)
j=1 ε [[e]] σ ψ δ ρphys ρchem

(5.30)

ε [[if B then E else E′]] i σ δ ρphys ρchem

= if β [[B]] i σ (σ z) δ ρphys ρchem = tt then ε [[R]] i σ δ ρphys ρchem

else ε [[R′]] i σ δ ρphys ρchem

(5.31)
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ε [[integrate(e)]] i σ ψ δ ρphys ρchem

= sh×4t
zmax−zmin

× (topi +midi + boti)

where topi = ptop ε [[r]] σ zmax δ ρphys ρchem

boti = pbot ε [[r]] σ zmin δ ρphys ρchem

midi =
∑lmax−1
l=lmin+1 ε [[r]] σ (l h) δ ρphys ρchem

ptop = lmin − zmin
h

pbot = zmax
h − lmax

zmax = max (σ z, σ (z ↓ -1))

zmin = min (σ z, σ (z ↓ -1))

lmin = b zmin
h c

lmax = b zmax
h c

(5.32)

History Indexing

H[[v]] n σ = (σ v′) ↓ n (5.33)

5.4.13 Boolean Expression Evaluation

Boolean values (tt and ff) are not first-class objects in the modelling language, but they

are computed as part of both conditional statement and conditional expression evalu-

ation. Similar to numerical expressions, there are non-indexed and indexed variants,

analogous to ε and ε.

The function β is used only in conditional statement evaluation where there can be

no forced iteration (iteration cannot be induced by the predicate evaluation, although

the rules in each branch may do so). Thus,

β b = β b 0 (5.34)

The function β is defined in terms of the function β. The conventional comparison

operators (=, 6=, <,>,≤,≥) have their usual interpretation, so the corresponding rules

for β are omitted. For completeness, we include the definitions of all, some and none.

Note that an attempt to evaluate these expressions with an index other than 0 would
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correspond to an error. Again, however, the Planktonica input system enforces correct-

ness in this sense: the variety-based variable reference is not permitted in this context

as this would imply a forced iteration at some outer level.

5.4.14 Boolean Expressions for Statements

β [[all(b)]] i σ ψ δ ρphys ρchem =
∧

1≤j≤arity(b)
β [[b]] j σ ψ δ ρphys ρchem (5.35)

β [[some(b)]] i σ ψ δ ρphys ρchem =
∨

1≤j≤arity(b)
β [[b]] j σ ψ δ ρphys ρchem (5.36)

β [[none(b)]] i σ ψ δ ρphys ρchem = ! (β [[some(b)]] σ ψ δ ρphys ρchem) (5.37)

5.5 Rewrite Rules: Chemistry

Analogous to the “update” code for each variety (functional group) and growth stage,

there is also update code associated with each chemical. There are no particles associated

with chemistry, however: chemical variables are associated with grid points rather than

particles. In the top-level update loop (equivalent to U∗ in the biology) each user-defined

chemical in each layer of the chemistry grid is updated in turn.

The rewrite rules for the chemistry modelling language are not listed as they are a

subset of those already presented for the biology. The differences are:

• State variables apply to a chemistry grid point rather than a particle

• There are no rules associated with variety-based variables (V Iter, V Const, V Local

and V State).

• The metamodel support functions (uptake, release, ingest, change, pchange,

divide, create) are not applicable.

• The variety-based functions (vAvg, vSum, vMul, all, some and none) are not

applicable.
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• integrate may not be used in expressions as this only has a meaning in the context

of a particle trajectory.

5.6 Between Timesteps

Between timesteps, the following functions are performed.

• All chemical concentrations above the turbocline are averaged, as an approxima-

tion for turbulence. This causes the chemical environment ρchem to change between

timesteps.

• The chemical update described in section 3.3.2 is performed. Within each layer,

for each c ∈ Chem, cconc is incremented by crelease of each particle in that layer,

after which the particle’s crelease is set to zero. Then, for each layer and chemical,

cconc in each layer is reduced by the total cuptake of the particles in that layer. If

cconc became negative, then cconc is set to zero, and the cuptake of each particle is

adjusted.

• The changes due to ingestion function calls are carried out. Recall that ingestion

has two arguments, an iterator of populations to be ingested, and an expression

defining the rate for each. For each variety in the iterator, all the particles of

that type, between the predator’s start and end depth, are considered, and their

subpopulation sizes are reduced by the calculated rate. After all particles have

performed their ingestion, if any of the sub-population sizes became negative, it is

set to zero, and the particles that ingested from that sub-population are re-visited.

The predators’ tingest variable for that sub-population type is reduced accordingly.

• Particles are rearranged into the correct layer within the internal data structures.

Particles that have dropped out of the bottom of the column, or those that have a

negative depth are removed, as are those that have a sub-population size of zero.

• All variables that have a history are updated, so that their current value becomes

their value in the previous timestep, and so on.
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• Particle management rules are applied, which may split a number of the largest

particles or merge a number of the smallest particles, causing changes in sub-

population sizes of particles. See section 7.4 for details of these rules, which are

defined outside of the model.

• User-defined events may cause changes to the physical environment, the chemical

environment, or sub-population sizes of particles. See section 7.5.

• The physical environment is updated, using forcing climatological data, resulting

in a new value of the turbocline, δ, and an updated physical environment ρphys.

This also takes into account the amount of any pigments within the particles, since

this affects irradiance. See the example from the WB model in section 6.3.



Chapter 6

Building The WB Model in

Planktonica

In this chapter, a new Planktonica-compliant reconstruction of the WB Model in its

entirety is described. The purpose is to show by example how a model is designed and

constructed using Planktonica, thus justifying the need for the variable types and special

functions provided.

6.1 Presentation Conventions

At present Planktonica equations and rules are entered using a very simple equation

editor. The precise nature of the way equations and/or rules are input by the user is a

largely cosmetic issue and is not seen as a central issue for this thesis. However, screen-

shots and explanations of how certain tasks are carried out are included in appendix A.

The rules listed in this chapter are done so in a format produced by a prototype

automatic documentation utility. The aim for the model building utility is that the

input to Planktonica, and the documentation that might accompany a model, should

be as similar as possible. The layout of rules (spacing and line breaks) is not relevant

to the modelling language; this is purely aesthetic for typesetting. Similarly, within

the semantics of the rule language, semicolons have been used to separate rules, but

93
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these have been omitted in this chapter. Finally, juxtaposition of two or more variables

implies multiplication throughout this chapter.

6.2 Functional Groups

The WB Model contains two functional groups: Diatoms and Copepods. Functional

groups exist in one of a number of stages, which the user can define. In the WB

model, stages are used to represent phases of the functional group’s life-cycle, and certain

functions and sub-functions are only relevant in certain stages. When creating a new

function or sub-function, the user specifies the stages of the functional group in which

the function operates.

Diatom Stages

Living/Cyst Dead

-
Motion
Photoadaptation
Photosynthesis
Respiration
Cell Division
Nutrient Uptake
Chlorophyll Content

Motion
Remineralisation

Mortality
(Zero Energy)

Figure 6.1: Diatom Stages

Figure 6.1 shows how diatom stages are used in the WB model. Three stages are

used: living diatoms and cyst diatoms are the same except that a different respiration

rule is used for diatoms in the cyst stage, during which they respire at a lower rate in

the winter months. The third stage represents dead diatoms.

6.2.1 Copepod Stages

Six stages are used to represent copepods in different phases of the copepod life-cycle,

shown in figure 6.2. It is created initially in a juvenile stage, although when reproduction

occurs, the offspring are created in the newborn stage. Only a proportion of newborn
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copepods survive to become juveniles. When a juvenile reaches a certain weight thresh-

old it becomes an adult, and produces eggs. After an incubation period, the eggs hatch

and the newborn offspring are created. After a specified time, the adult becomes senile,

and after another time period they become detritus (dead). A sixth stage exists when

a copepod has been cannibalised; in the growth function, if carbon loss by respiration

outweighed carbon gained by ingestion, then the copepods cannibalise each other to

make up the deficit.

Newborn

Migration
Turbulence
Satiation
Ingestion
Respiration
Excretion

-

-

Newborn
Mortality

Become
Juvenile

-

Juvenile

Migration
Turbulence
Satiation
Ingestion
Respiration
Excretion
Increase Age

-

Become
Adult

-
Cannibalised

Cannibalised

�

Adult

Migration
Turbulence
Satiation
Ingestion
Respiration
Excretion
Reproduction
Increase Age

�

Become
Senile�

Dead

Turbulence
Sinking
Remineralisation

Senile

Migration
Turbulence
Satiation
Ingestion
Respiration
Excretion
Increase Age

�
Death by
Old age

�

Figure 6.2: Copepod Stages

A further stage is used to represent a copepod pellet. This is actually a mis-use

of the term ‘stage’, but being able to re-use the turbulence and sinking functions for

copepods, and indeed to create the pellet itself is extremely convenient. We return to

this in section 6.6.5
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6.3 Chemicals and Pigments

The WB model has two chemicals and one pigment: ammonium and nitrate are absorbed

by diatoms, and by photosynthesis diatoms produce the pigment chlorophyll, which

behaves like a chemical except additionally has pigmentation properties, called action

spectra. Each action spectra is a function of wavelength, and at present, the built-in

physics module provides the irradiance through 25 wavelengths, hence this is currently

the maximum resolution for the pigmentation function.

For biofeedback, two action spectra, χ and e are used. The values of these two action

spectra for chlorophyll are shown for the 25 wavebands in figure 6.3. In the table, the

wavelength given is the beginning of that band; for example, the value of χ is 0.121

between wavelengths 387.5nm and 412.5nm.

w (nm) 300 357.5 387.5 412.5 437.5 462.5 487.5 512.5 537.5 562.5 587.5

χ 0.0 0.0 0.121 0.109 0.095 0.077 0.061 0.047 0.041 0.035 0.035

e 1.0 1.0 0.677 0.702 0.702 0.703 0.695 0.673 0.65 0.618 0.628

w (nm) 612.5 637.5 662.5 687.5 712.5 737.5 787.5 900 1100 1300 1500

χ 0.041 0.045 0.049 0.034 0.0 0.0 0.0 0.0 0.0 0.0 0.0

e 0.65 0.672 0.687 0.62 1.0 1.0 1.0 1.0 1.0 1.0 1.0

w (nm) 1700 1900 2100 (2300)

χ 0.0 0.0 0.0

e 1.0 1.0 1.0

Figure 6.3: Action spectra for chlorophyll biofeedback

The physics code calculates the irradiance as the sum of a function for each pigment:-

I(w) = Σp f
(
χp(w) cpep(w)

)
(6.1)

This equation is built into the kernel - it is not specified, or even seen, by the user.
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The irradiance I, at a certain wavelength w is computed as a sum for each pigment, where

the tables for χ and e are pigment-specific, and cp is the concentration of that pigment

within the particles in the water, a diagnostic value computed behind the curtain.

The function f represents a range of other parameters that are multiplied in the irra-

diance equation, which are not documented here. For details, refer to the documentation

of the physics code [4].

6.4 Variable Tables

For reference, this section contains tables of all the parameters and variables used in the

model.

Name Description Value Units

dyear Day of year (section 6.5.3) - none

MLDepth Turbocline depth - m

4t Timestep size 0.5 h

π Constant pi π none

sh Convert from seconds to hours 3600 s−1h

Figure 6.4: Global Identifiers
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Name Description Units

Aconc Ammonium concentration µg Nitrogen m−3

Cconc Carbon concentration µg Carbon m−3

Chlconc Chlorophyll concentration µg Chlorophyll m−3

Iv Visible Irradiance Wm−2

Nconc Nitrate concentration µg Nitrogen m−3

T Temperature ◦C

Figure 6.5: Ambient Environmental Variables

Name Description Units

Aingest Ammonium ingested last timestep µg Nitrogen

Apool Ammonium pool µg Nitrogen

Auptake Ammonium uptake last timestep µg Nitrogen

Cingest Carbon ingested last timestep µg Carbon

Cpool Carbon pool µg Carbon

Chlpool Chlorophyll pool µg Chlorophyll

Ningest Nitrate ingested last timestep µg Nitrogen

Npool Nitrate pool µg Nitrogen

Nuptake Nitrate uptake last timestep µg Nitrogen

z Depth m

Figure 6.6: State Variables for all particles

Note that for copepods there is also a single variety iterator, P ∗, which the vectors

F , kI , Pmin, Igmax, Igv, s1 and s2 are associated with. For the WB Model, the iterator

P
∗ contains two elements, which are members of the default diatom variety (there is

only one variety of diatom in the WB model), in their live and cyst stage. Ingestion is

assumed to behave similarly for the two stages, hence the members of each variety-based



CHAPTER 6. BUILDING THE WB MODEL IN PLANKTONICA 99

Name Description Value Units

AF Radius of cell 1x10−5 m

Aremin Ammonium remineralisation rate 0.0020833 µg Nitrogen h−1

dcyst Day of year in which to enter cyst stage 305 none

ddecyst Day of year in which to leave cyst stage 31 none

Ec Energy required for cell division 0.14x10−3 J

Emax Maximum carbon pool (energy) 2.66x10−4 J

kA Half saturation for ammonium 0.5 µg Nitrogen m−3

kc Carbon content of a diatom 4.6x10−4 µg Carbon

kchl Chlorophyll content of a diatom 9.2x10−10 µg Chlorophyll

kF Light absorbtion parameter 0.63 none

kN Half saturation for nitrate 0.5 µg Nitrogen m−3

Nc Nitrogen required for cell division 4x10−9 µg Nitrogen

Npmax Maximum nitrogen pool 1.16x10−8 µg Nitrogen

Nremin Nitrate remineralisation Rate 0.0020833 µg Nitrogen h−1

RC Respiration parameter for cyst diatom 1x10−7 Jh−1

RL Respiration parameter for living diatom 2x10−7 Jh−1

ta Adaptation time scale 5 h

Tr Reference temperature 10 ◦C

uA Maximum uptake of ammonium 4x10−10 µg Nitrogen h−1

uN Maximum uptake of nitrate 4x10−10 µg Nitrogen h−1

Vp Sinking rate 0.004167 mh−1

Figure 6.7: Constant Parameters for Diatoms

parameter are assumed to be the same, and a single value is listed in the tables above.
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Name Description Init Value Units

Ep Energy Pool 1x10−4 J

Im Photoadaptive Variable 10 Wm−2

Figure 6.8: State Variables for Diatoms

Name Description Units

Acdiv Ammonium change by cell division µg Nitrogen

cdiv Cell division flag none

dA Change in Ammonium µg Nitrogen

dN Change in Nitrate µg Nitrogen

Eccdiv Energy change by cell division Jh−1

Ecestimate Estimated new energy Jh−1

Ecmax Maximum energy pool J

Ecphoto Energy change by photosynthesis Jh−1

Ecresp Energy change by respiration Jh−1

Ncdiv Nitrate change by cell division µg Nitrogen

Nitrogen Total Nitrogen µg Nitrogen

nred Flag for reducing nitrogen in cell division none

s Scaling factor for uptake none

zsink Displacement by sinking m

zturb Displacement by turbulence m

Figure 6.9: Local/Exported Variables for Diatoms
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Name Description Value Units

AI Incubation time 480 h

Aremin Ammonium remineralisation rate 0.0020833 µg Nitrogen h−1

F Filtration rate 1x10−9 m3s−1

Gmax Weight required for maturity 100 µg Carbon

Gmin Body weight at birth 0.2 µg Carbon

Imp Probability of infant mortality 0.9 none

Ir Reference isolume 1 Wm−2

ka Assimilation parameter 1 none

kb Background respiration parameter 0.1 none

kcp Carbon content per diatom 4.6x10−4 µg Carbon plankton−1

kI Half-saturation constant 4x106 plankton m−3

L Maximum life time of adult 960 h

Nremin Nitrate remineralisation rate 0.0020833 µg Nitrogen h−1

Pmin Minimum threshold for ingestion 100000 plankton m−3

rac Ammonium to carbon ratio 8.7x10−6 µg Nitrogenµg Carbon−1

Rb Basal respiration parameter 0.3x10−3 h−1

Rs Assimilation parameter 0.3 none

s1 Ingestion Parameter 4.2 plankton s−1

s2 Ingestion Parameter 3.2 plankton s−1

Smin Min. satiation before course alteration 0 none

tm Relaxation time 4 h

Tr Reference temperature 10 ◦C

Vmax Maximum swimming speed 45 mh−1

Vz Sinking rate 0.004167 mh−1

Figure 6.10: Constant Parameters for Copepods



CHAPTER 6. BUILDING THE WB MODEL IN PLANKTONICA 102

Name Description Init Value Units

Ar Age since maturity 0 h

It Target isolume 0 Wm−2

Igmax Maximum ingestion rate 0 plankton s−1

R Total respiration rate 1 µg Carbon h−1

Rass Respiration cost of food assimilation 1 µg Carbon h−1

Rbac Background Respiration Rate 0 µg Carbon h−1

Rbas Basal Respiration Rate 0 µg Carbon h−1

S Satiation 0.5 none

Figure 6.11: State Variables for Copepods
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Name Description Units

CAss Carbon Assimilated µg Carbon

dS Change in satiation h−1

dz Change in depth m

Ftemp Carbon in pellet µg Carbon

Ig Rate of Plankton ingestion plankton s−1

IgmaxTotal Combined ingestion rate plankton s−1

kdcalc Used for daytime migration Wm−2

kncalc USed for nighttime migration none

Nitrogening Nitrogen ingested µg Nitrogen

Nitrogenremin Proportion of Nitrate to remineralise none

Nitrogenreq Proportion of Nitrate to assimilate none

OffspringCount Number of offspring none

Pcan Probability of being cannibalised none

Reproduce Flag for reproduction none

vmod Sign of satiation change none

WTG Temperature and weighting factor none

zday Depth change by daytime migration m

znight Depth change by nighttime migration m

zsink Depth change by sinking m

zturb Depth change by turbulence m

Figure 6.12: Local/Exported Variables for Copepods
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6.5 Diatom Functional Group

Note that for all groups, rules are executed in each timestep, and are thus written

with implicit units of ‘per timestep’. To convert from hours to timesteps, the system

parameter 4t is used, which for the WB model is set to 0.5 hours.

6.5.1 Diatom Motion

Above the turbocline, diatoms are mixed by turbulence. We approximate turbulence

by randomly locating the diatom between the surface and the turbocline. Below the

turbocline, diatoms sink at a uniform rate. This behaviour occurs in all stages of diatom.

Rules 6.2 shows the rules for the change in depth, during a timestep. Recall that all

rules specify a change that happens in the course of one timestep, the length of which

is defined by the variable 4t.

z = if (z ≤MLDepth) then z + zturb else z + zsink (6.2)

The variable z is the depth of the particle, which is a state variable that all particles

inherit. The identifiers, zturb and zsink represent the change in depth per timestep, due

to turbulence, and sinking respectively. Here, we make use of sub-functions, creating one

for turbulence, which calculates a value for zturb and another sub-function for sinking,

which calculates the value of zsink, where the two variables are defined as exported

variables.

Turbulence sub-function

zturb = rnd(MLDepth)− z (6.3)

The turbulence sub-function specifies the change in depth that happens to a diatom

during a timestep due to turbulence. The approximation is that after a timestep, if the

particle began above the turbocline, it will have a random depth between the turbocline

and the surface. Hence zturb is the difference between this final position, and its starting

position, z.
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Sinking sub-function

Zsink = Vp 4t (6.4)

Below the turbocline, diatoms sink at a steady rate, Vp, which is a constant parameter

defined as 0.041667 mh−1. As it is defined in units of absolute time, it must be multiplied

by the size of the timestep.

6.5.2 Diatom Photoadaptation

Im = Im +
(
Iv − Im
ta

)
4t (6.5)

This rule models diatoms taking time to adapt to changes in light. Im is a state

variable for the diatom, encapsulating its current light adaptation level (Wm−2). Im

asymptotically approaches the current ambient visible irradiance Iv, whether light or

dark. The constant time parameter, ta for diatom photoadaptation is 5 hours. The

light adaptation variable, Im is then used for calculating photosynthesis.

6.5.3 Diatom Energetics

The energy of a diatom increases by photosynthesis, but decreases by respiration, and

cell division. As with motion, these three sub-processes are separated from the top-level

energy rule.

Ecestimate = Ecphoto − (Ecresp + Eccdiv) (6.6)

Ecmax = Emax − Ep (6.7)

Ep = Ep +min(Ecestimate4t, Ecmax) (6.8)

The first rule calculates an estimate of the new value for energy, using the three

sub-functions. Ecphoto, Ecresp and Eccdiv are the changes in energy due to the three

energy processes, and hence are defined as exported variables, to be defined by the sub-

functions. Ecestimate is defined here as a local variable, since it is only required within

these three assignments.
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Rule 6.7 calculates the maximum permitted change in energy, which is the difference

between the current energy, the state variable Ep (J), and a parameter Emax (2.66x10−4

J), which defines the maximum energy.

Finally, the state variable for energy Ep is increased by the estimated change, or the

maximum change if the estimate was too great.

Photosynthesis

Ecphoto = sh kF π AF
2 IV e−

IV
Im (6.9)

Here, kF is a light absorption constant, (0.63, no units), AF is the radius of the

diatom (1x10−5m), IV is the ambient irradiance in the visible spectrum (Wm−2), and

Im is the light adaptation variable - the state variable defined in the light adaptation

rule previously. π is a built in constant found under System Constants in figure A.6.

As AF 2 is in m2, and IV is in Wm−2, the right-hand side is measured in Watts.

Ecphoto is converted from Js−1into Jh−1 with the constant convertor sh (3600 sh−1).

Normal Respiration

In the winter months where the diatoms get less energy from photosynthesis, they reduce

their respiration rate to save energy. This is modelled by a stage change, where the

diatoms enter a cyst stage, in which a different respiration rule operates. Note that this

is not in the original WB specification, and has been added after recent discussions [58].

Ecresp = RL

(
0.3 + 0.7

T

Tr

)
(6.10)

Rule 6.10 defines the standard respiration rule. RL is a respiration parameter

(2x10−7 Jh−1), T is the ambient temperature and Tr is a reference temperature, 10◦C.

The function is set to operate only in the Living diatom stage.

Cyst Respiration

The rule for respiration in winter uses a different respiration parameter RC (1x10−7

Jh−1), but is otherwise similar to standard respiration. It is set to operate only when
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the diatom is in the winter (cyst) stage.

Ecresp = RC

(
0.3 + 0.7

T

Tr

)
(6.11)

Enter Cyst Stage

This function contains a single rule which causes the diatom to enter winter respiration

mode between November and January of each year, inclusive. The variable dyear is a

system variable representing the day of the year between 1 and 365; this is selected from

the system variables section of figure A.6.

The parameter dcyst is 31 days, representing the end of January, and ddecyst is 305

days, representing the start of November. If the day of the year is in the winter months

between these two dates, then the diatom should change to the Cyst stage, for winter

respiration. This function is set to operate only in the Living stage.

if (dyear > dcyst) or (dyear < ddecyst) then change(Cyst) (6.12)

Leave Cyst Stage

if (dyear > ddecyst) and (dyear < dcyst) then change(Living) (6.13)

In contrast to the Become Cyst function, the Leave Cyst Stage function contains a

single rule which returns the diatom to the normal stage of respiration at midnight on

the 1st of February in each year of the simulation. This function is set to operate only

in the Cyst stage of the diatom.

Note that the introduction of cyst behaviour into diatoms is a recent change, and

has one flaw. The system variable dyear gives the number of days that have elapsed since

the beginning of the current year, and dcyst and ddecyst are numerically hard-wired to

represent the beginning of November and the end of January respectively. The times at

which diatoms enter and leave the cyst phase are specific to the climate, and the values

of dcyst and ddecyst assume that Winter occurs between November and January. This

assumption is obviously not always the case, if the model is to be run in the Southern

Hemisphere for example.
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These values have been chosen to test the model with the Azores system, but ul-

timately a better way of establishing when to enter and leave the cyst phase will be

required.

Cell Division

When diatoms perform cell division, a single diatom splits into two. There is an energy

cost due to cell division, and the nutrients the original diatom contained are evenly

divided between the divided cells.

Cell division is possible if the energy pool is above a certain threshold, and the

amount of nitrogen absorbed by the diatom is above another threshold.

Nitrogen = Apool +Npool (6.14)

The total absorbed nitrogen is calculated in rule 6.14; Nitrogen is a local variable

used just within this rule, but Apool and Npool are the pools automatically created within

every particle when the ammonium and nitrate chemicals were introduced. See the rule

for absorbing chemicals in section 6.5.4.

cdiv = if (Ep > Ec) and (Nitrogen > Nc) then 1 else 0 (6.15)

Rule 6.15 decides whether cell division should occur, if the internal energy pool

Ep has exceeded the necessary energy threshold Ec (1.4x10−4J,) and if the nitrogen

absorbed is greater than the threshold parameter Nc (4x10−9µg of nitrogen). It remains

at zero if cell division was not possible.

The variable cdiv is defined here, and used three times in other rules. It is defined

as a local variable, and like all variables in Planktonica, it is a floating point number

(double). As its only values are 0 and 1, the option of providing boolean flags for such

variables was considered. However, as this would require an extra variable type, and

associated support for assignments and comparisons, we have chosen to keep all the data

types numerical, and allow the user to define values for flags.

Ecdiv = if (cdiv = 1) then Ep −
Ep − Ec

2 4t
else 0 (6.16)
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Ecdiv calculates the energy change if cell division has happened; this is for use in

the energy rule 6.6. If cell division occurred, then the new value of Ep should be Ep−Ec

2 .

Dividing by 4t yields the correct units for Ecdiv (Jh−1).

nred = if (cdiv = 1) then 0.5 else 1 (6.17)

Ncdiv = Npool nred (6.18)

Acdiv = Apool nred (6.19)

Rule 6.17 defines a local variable nred, which is used in rules 6.18 and 6.19 to halve

the amount of nitrate and ammonium in the internal pools, should cell division happen.

Here, Ncdiv refers to the amount of nitrate left, rather than the change in Nitrate, and

is an exported variable, used in the rules for energy.

if (cdiv = 1) then divide(2) (6.20)

Finally, 6.20 calls the divide function, which performs the cell division, handling

sub-populations behind the curtain, as described in section 3.4.2.

6.5.4 Diatom Nutrient Uptake

Diatom particles absorb both ammonium and nitrate together from the water. They

have a maximum threshold, which the sum of their internal ammonium and nitrate must

not exceed. Depletion handling rules performed behind the curtain prevent the diatom

from absorbing more nutrient than was available, as discussed in section 3.3.2.

dN =
(
uN

Nconc

Nconc + kN

)
4t (6.21)

dA =
(
uA

Aconc
Aconc + kA

)
4t (6.22)

Rules 6.21 and 6.22 calculate the maximum amount of nitrate and ammonium re-

spectively, that the diatom could absorb. The parameters un and ua are maximum
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uptake rates for nitrate and ammonium, both 4x10−10 µg Nitrogen h−1, and the pa-

rameters kN and kA are half-saturation constants for nitrate and ammonium, both set

to 0.5µ g Nitrogen m−3. Nconc and Aconc are the chemical variables automatically cre-

ated when the chemicals were created, and give the concentrations in each layer in µg

Nitrogen m−3. The results are stored in local variables dN and dA, which are local to

this function.

dNitrogen = dA+ dN (6.23)

s = min

(
1,
Npmax − (Apool +Auptake +Npool +Nuptake)

dNitrogen

)
(6.24)

The two uptakes are summed, storing the result, the total potential change in nitro-

gen, in the local variable dNitrogen. Rule 6.24 then calculates the difference between

the maximum nutrient, Npmax (7.6x10−9 µg Nitrogen), and the total nutrient in the

diatom before this timestep, which is the sum of the pools, and the amounts gained

from the previous timestep. The local variable s is the factor by which the nitrate and

ammonium absorption must be reduced, if Npmax would be exceeded.

if (dNitrogen > 0) then uptake(s dN,N) (6.25)

if (dNitrogen > 0) then uptake(s dA,A) (6.26)

Rules 6.25 and 6.26 model the absorbtion of nitrate and ammonium, via the uptake

function, described in section 3.3.2.

Npool = Ncdiv +Nuptake (6.27)

Apool = Acdiv +Auptake (6.28)

Lastly, the nitrate and ammonium pools are updated in rules 6.27 and 6.28, using the

corrected amounts gained from the previous timestep, and also the exported variables

that carry the new value of the pool, including any changes caused by cell division (see

section 6.5.3).



CHAPTER 6. BUILDING THE WB MODEL IN PLANKTONICA 111

6.5.5 Diatom Chlorophyll Pool

This rule sets the concentration of chlorophyll within a single diatom to a constant value,

kchl (9.2x10−10µ g Chlorophyll). Biofeedback uses this value as shown in section 3.3.1.

Note that in the case of cell division, since the sub-population size of a particle doubles,

but the chlorophyll pool defined per individual remains constant, it is assumed the cell

dividing into two causes the amount of particulate chlorophyll in the system to double.

ChlPool = kchl (6.29)

6.5.6 Diatom Carbon Pool

The carbon content of a diatom is also assumed to be a constant, kc (4.6x10−4µg Carbon).

CPool = kc (6.30)

6.5.7 Diatom Mortality

Should the internal energy pool of the diatom drop below zero, the diatom dies. Here,

the change function described in section 3.4.1 is used to change the classification of the

diatom from the Living stage, to the Dead stage, which was setup in section 6.2. To

prevent dead particles from contributing to biofeedback, the chlorophyll pool is set to

zero on the diatom’s death.

if (Ep < 0.0) then Chlpool = 0.0 (6.31)

if (Ep < 0.0) then change(Dead) (6.32)

6.5.8 Diatom Remineralisation when dead

Bacteria release dead diatoms, causing their internal nutrients to be returned to the

water. Since diatoms only absorb nitrate and ammonium, these are the only nutrients

it is necessary to write remineralisation rules for.

release(Aremin Apool 4t, A) (6.33)
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Apool = Apool − (Aremin Apool 4t) (6.34)

release(Nremin Npool 4t,N) (6.35)

Npool = Npool − (Nremin Npool 4t) (6.36)

Aremin and Nremin are the rates of remineralisation, both 0.00208333 µg Nitrogen

h−1, which are parameters defined by the user. The release function is used to write the

changes to the chemical concentrations, since direct writing by the particles is forbidden

(see section 3.3.2).

6.6 Copepod Functional Group

6.6.1 Copepod Motion

dz = if (IV > 0) and (z < MLDepth) then zturb + zday else ( (6.37)

if (IV > 0) and (z ≥MLDepth) then zsink + zday else (

if (IV < 0) and (z < MLDepth) then zturb else

zsink + znight ) )

z = max(0, z + dz) (6.38)

The motion of copepods is defined in terms of turbulence, sinking, migration by day,

and migration by night, and as for diatoms, these auxiliary motion rules are delegated

to subfunctions, with zturb, zsink, zday and znight defined as exported variables. If the

particle is above the turbocline, then zturb applies, otherwise zsink is used, but note that

copepods only sink when they are dead, as will be specified when making the sink rule.

The value of zsink will be zero while the copepod is in any of its live stages.

Day-time migration is used if the visible irradiance, IV in the copepod’s ambient

environment is above zero, whereas if it is dark, night-time migration is applied, but

only if the copepod is below the turbocline. Rule 6.38 then ensures that the copepod

cannot escape from the top of the column, which can sometimes happen mathematically
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(if not in nature), when turbulence and migration both cause upward motion of the

copepod.

Day-Time Migration sub-function

During the day, copepods tend to stay deeper, in darker water where they are less visible

to predators. However, if they are sufficiently hungry, they will take risks and venture

into lighter water, where phytoplankton are more copious. The degree of satiation is

represented by the copepod state variable S, which has no units, and ranges from zero

for least satiated, to one for most satiated.

It = Ir(2− S) (6.39)

Rule 6.39 defines the target isolume; this is the level of light in Wm−2 that a copepod

will aim to swim to, depending on how satiated it is. Ir (1 Wm−2) is the default

irradiance the copepods prefer when they are not hungry. Hence, as S varies between 0

and 1, the target isolume varies between Ir and 2Ir. The hungrier it is, the more it will

risk being seen by visual predators, in order to feed.

kdcalc = 0.4(IV − It) (6.40)

The copepod aims for this target isolume in a way represented by rule 6.40; IV is

the ambient visible irradiance (Wm−2) and kdcalc is a local variable representing the

difference between the current light, and the desired light.

zday = Vmax 4t (if (kdcalc < −1) then − 1 else ( (6.41)

if (kdcalc > 1)then 1 else kdcalc ) )

The conditional part of rule calculates the sign of kdcalc; if the copepod is aiming

to move up into lighter water, the sign is negative, whereas for moving downwards, the

sign is positive. This is multiplied by a weighting factor, WTG (see rule 6.6.2), which

represents the effect of temperature and bodyweight on swimming velocity. As WTG is
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additionally used for night-time migration, and the ingestion rule, it is defined as an

exported variable in a sub-function, described in section 6.6.2.

Vmax is a parameter representing the maximum migration velocity, 45 mh−1, and

since the units are hour-based, 4t is required.

Night-Time Migration sub-function

At night, copepods above the mixing layer are subject only to turbulence, but copepods

below the mixing layer perform night-time migration. The variable vmod is exported by

the satiation subfunction defined in section 6.6.2, and represents whether the copepod is

becoming hungrier, or less hungry over time; -1 implies the copepod is getting hungrier.

kncalc = if (vmod = −1) then − 0.4(2− S) else − 1 (6.42)

znight = kncalc WTG Vmax 4t (6.43)

The local variable kncalc represents how quickly the copepod would like to eat, and

this is moderated by the maximum swimming speed Vmax, and the effect of temperature

and weight on the copepods swimming speed, WTG, described in section 6.6.2.

Sinking sub-function

The sinking rule is similar to that of diatoms, and Vz has the same sinking value of

0.041667 mh−1. The difference is that the sinking rule only applies to copepods that

are dead, and also to copepod pellets.

zsink = Vz 4t (6.44)

Turbulence sub-function

The turbulence rule is identical to that of diatoms, and is applicable in all stages of

copepod.

zturb = rnd(MLDepth)− z (6.45)
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6.6.2 Copepod Ingestion

Refer to section 3.4.5 for information on the variable types necessary for ingestion. For

the WB model, the ingestion requires the following steps.

The behaviour to model is that copepods ingest diatoms in their live and cyst stages,

treating both stages similarly. The first step is to create a variety-based iterator, P ∗,

which in VEW Species Builder (see section 7.3) will be set to contain live and cyst

diatoms, of their default variety, as there is only one variety of diatoms and copepods in

this version of the WB model. Recall that any rule in which P ∗ occurs, will be iterated

for each element of P ∗, and when read, P ∗ returns the concentration of the member

currently being considered.

Ig = min



WTGF
∫ z
z[−1]

 if
(
P
∗
> Pmin

)
then

(P ∗−Pmin)2

(P ∗−Pmin)+kI

else 0

 dz
max

(
1x10−5,

∣∣∣z − z[−1]

∣∣∣) , s1 − s2 S


(6.46)

Since the right hand side contains P ∗ and other variety-based types associated with

P
∗, the target variable, Ig must also be a variety-based variable associated with P ∗, as

described in section 4.3.9. In this case, Ig is a variety-based state variable, and stores

the ingestion rate of each plankton type in P ∗ (plankton s−1).

This rule integrates a function between the starting and ending depth of the cope-

pod’s trajectory in the previous timestep; z is the current depth in metres, and z[−1]

is the depth at the end of the previous timestep, obtained by a historic lookup (see

section 4.3.10). Recall from section 3.4.4 that when the integrate function is used, P ∗

returns a concentration at the depth of the particle as it moves along its trajectory.

The ingestion rate is then averaged, by dividing by the change in depth, with a

catch to prevent a divide-by-zero error in the unlikely case of the particle remaining at

the same depth. The expression (s1 − s2S) gives the maximum ingestion rate, which

any member of Ig cannot exceed. The parameters s1 and s2 (4.2 and 3.2 plankton s−1

respectively).
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The ingestion rule uses a number of variety-based parameters, all of which are explic-

itly associated with P
∗ by the user. These are F , the filtration rate (1x10−9m3s−1), a

half-saturation constant kI (4x106plankton m−3), the minimum concentration threshold

Pmin (1x105plankton m−3) and WTG is the weighting factor mentioned previously.

Having calculated the ingestion rate, the ingest function is used to carry out the

reduction of other particles; refer to section 3.4.5.

ingest(P ∗
,

 Ig if (P ∗
> Pmin)

else 0 )

) (6.47)

The ingestion rates for all the target varieties, stored in Igv, are summed into a

single value, using the function vSum, one of the three variety-based reduction functions

described in section 4.3.9.

Rule 6.47 is responsible for reducing the particles that have been ingested. This

is done behind the curtain, reducing the sub-population sizes of the ingested prey, as

described in section 3.4.5.

Satiation

Satiation defines a unit-less state variable S, representing how hungry a copepod is; 0

represents most hungry, 1 represents least hungry. This function begins with calculating

the maximum ingestion rate. This is a variety-based calculation, as a copepod may

have a different maximum ingestion rate of one particle-type to another. Firstly the

maximum ingestion rate for both live and cyst diatoms is set; Igmax is associated with

P
∗.

Igmax = s1 − s2S (6.48)

IgmaxTotal, in rule 6.49 is a state variable for copepods, representing the total number

of individuals per second that could have been ingested by the copepod. It is calculated

using the special vSum function, which takes as its argument a variety-based variable.

In this case, Igmax is set of maximum ingestion rates for each particle concentration in
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the set P ∗.

IgmaxTotal = vSum
(
Igmax

)
(6.49)

Rule 6.50 defines the change in satiation. The carbon content per cell, kc is assumed

constant as (4.6x10−4µg Carbon per plankton), for both live and cyst diatoms. The

parameter tm is a relaxation time for copepod ingestion (4 hours).

dS = if (IgmaxTotal > 0) then

(
Cingest

IgmaxTotal kc sh 4t − S
)

tm
(6.50)

else
1− S

tm

The result of rule 6.50 is stored in a local variable dS, so it can be used in both

rules 6.51 and 6.52. Rule 6.51 simply applies the change to the satiation state variable.

S = S + dS4t (6.51)

Finally, vmod is an exported variable representing whether the copepod is getting

more or less hungry; it is unitless and set to 1.0 or -1.0. Recall this was used for

copepod migration; see section 6.6.1. Hence, satiation is made a sub-function so that

vmod is available for other functions.

vmod = if (dS < Smin) then − 1 else 1 (6.52)

Weighting Function

WTG = 0.3 + 0.7
T

Tr

(
if (Cpool > Gmax) then 1 else

(
Cpool
Gmax

)0.7
)

(6.53)

The weighting function produces a unitless exported variable, WTG which represents

the effect of water temperature and weight on the swimming speed of a copepod, (see

sections 6.6.1) and its ingestion, (see section 6.6.2). It is calculated using the cope-

pod’s carbon pool, Cpool (µg Carbon), its maximum weight Gmax (100µg), the ambient

temperature T and a reference temperature Tr (10◦C).
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6.6.3 Copepod Respiration

R = Rass +RBas +RBac (6.54)

Copepod Respiration is separated into three parts, which are summed in rule 6.54 to

give a state variable R, the carbon lost by respiration per hour (µgCarbon h−1). Firstly,

there is a respiration cost of assimilating (ingesting), Rass. This is calculated using

the amount of carbon ingested in the previous timestep, converted into the amount of

carbon ingested per hour, by dividing by 4t. Two assimilation parameters ka (1, no

units), and Rs (0.3, no units) are also used.

Rass = Rs ka
Cingest
4t

(6.55)

Secondly, Rbas is the basal respiration rate, calculated using a basal respiration

parameter Rb (0.3x10−3 h−1), the weighting function WTG, and the maximum weight

of the copepod, Gmax (100µg Carbon).

RBas = Rb WTG Gmax
0.7 (6.56)

Finally, Rbac is the background rate of respiration, which uses a background respi-

ration parameter kb (0.1, no units). The three respiration rates are all local variables,

only used within this function.

RBac = Rb kb Gmax
0.7 (6.57)

6.6.4 Copepod Growth and Cannibalism

Here, the weight change of copepods is handled, and if ingestion of diatoms is not

sufficient to overcome respiration loss, then the copepods cannibalise each other. Firstly,

the amount of nitrogen ingested is calculated by summing the amounts of nitrogen in

the ammonium and nitrate that have been ingested. All units here are in µg Nitrogen.

Nitrogening is a local variable used only within this function, whereas Aingest andNingest

are the automatically added ingestion variables for ammonium and nitrate.

Nitrogening = Aingest +Ningest (6.58)
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Next, the carbon assimilated this timestep, CAss is calculated. It uses the assimi-

lation parameter ka (1, no units), the amount of carbon ingested in the last timestep,

Cingest, and the carbon loss due to respiration R (µg Carbon h−1) converted into per-

timestep units by multiplying by the timestep, 4t.

CAss = ka (Cingest −R 4t) (6.59)

Not all the nitrogen gained by ingesting diatoms can be assimilated. The local

variable Nitrogenreq is the proportion of nitrogen to be assimilated (no units). If any

nitrogen was ingested, then the amount assimilated is proportional to the amount of

carbon assimilated (CAss). The ratio rac is a parameter to convert carbon into nitrogen

(8.7x10−6 µg Nitrogen µg Carbon−1).

Nitrogenreq = if (Nitrogening > 0) then
racmax (CAss, 0)
Nitrogening

else 0 (6.60)

The proportion of the ingested nitrogen to be remineralised is then calculated, using

the carbon losses due to background and basal respiration, (RBac and RBas), converting

carbon to nitrogen again with the parameter rac.

Nitrogenremin = if (CAss > 0) then
(RBac +RBas) rac
Nitrogening

else 0 (6.61)

If the respiration losses were greater than the carbon assimilated by ingestion, then

copepods eat each other to make up the deficit. If this is the case, the probability of an

individual copepod being eaten is Pcan (unitless), defined below.

Pcan = if (CAss < 0) then − CAss
Cpool

else 0 (6.62)

The carbon, nitrate and ammonium pools are now increased by the amounts of each

chemical assimilated.

Cpool = if (Reproduce = 1) then Cpool = Gmax (6.63)

else Cpool +max(CAss, 0)

Npool = Npool +NitrogenreqNingest (6.64)
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Apool = if (Reproduce = 1) then Apool −Gminrac (6.65)

else Apool +NitrogenreqAingest

The proportion of ingested nitrogen to be remineralised is then released to the am-

bient environment as ammonium.

release(NitrogenreminAingest, A) (6.66)

release(NitrogenreminNingest, A) (6.67)

Finally, the probability of cannibalism is implemented using the pchange function,

causing the proportion Pcan of the sub-population to move into the Cannibalised stage.

if (CAss < 0) then pchange(Cannibalised, Pcan) (6.68)

6.6.5 Copepod Excretion

The carbon that wasn’t assimilated is excreted as a faecal pellet. The amount of carbon,

FTemp (µg Carbon) is calculated below.

FTemp = (1− ka (1−Rs))Cingest (6.69)

If there is a positive amount of carbon, a pellet is created. The pellet’s ammo-

nium pool is calculated using the amount of carbon to be excreted, and the conversion

parameter rac.

if (FTemp > 0) then create(Pellet, 1) (6.70)

Apool = rac FTemp

6.6.6 Copepod Maturity

Copepods move from the juvenile to the adult stage where their carbon pool, Cpool (µ

g Carbon) reaches a threshold weight Gmax (100µg Carbon). This rule changes their

stage, and is called only when the copepod is in the juvenile stage.

if (Cpool > Gmax) then change(Adult) (6.71)
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6.6.7 Copepod Aging

Ar = Ar +4t (6.72)

When copepods become adults, a biological clock starts counting, and reproduction

and senility happen at set times. Ar counts the number of hours that have elapsed since

the copepod became an adult, and continues counting until the copepod dies. It is thus

called in the adult and senile stages only.

6.6.8 Copepod Reproduction

Having reached the adult stage, a gestation time begins, after which eggs hatch (repro-

duction); this gestation time is defined by the parameter AI (480 hours). A numerical

flag is used to record whether reproduction should occur, and is defined as an exported

function, so that it can be used in the growth function, hence Copepod reproduction is

defined as a sub-function.

Reproduce = if (Ar = AI) then 1 else 0 (6.73)

Upon reproduction, a number of offspring are produced, depending on the carbon

gained by the copepod since gestation began, and the minimum carbon for the newborn

copepods, Gmin (0.2 µg Carbon).

OffspringCount = if (Reproduce = 0) then
Cpool −Gmax

Gmin
else 0 (6.74)

if (Reproduce = 1) then create(Newborn,OffSpringCount) (6.75)

S = 0.5

Ar = 0

Cpool = Gmin

R = 0

The offspring are created in the newborn stage, and the satiation (S), age (Ar),

ingestion rate (Ig), respiration loss (R) and carbon pool(Cpool) of the newborn copepods

are initialised.
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6.6.9 Copepod Newborn Mortality

When copepods are born via the reproduction rule, they start in the stage called New-

born. The user sets this mortality rule to only apply to the newborn stage. The copepods

stay newborn only momentarily; during this stage, a proportion Imp (0.7) of the new-

born copepods die due to infant mortality. The remainder progress immediately to the

juvenile stage.

pchange(Dead, Imp) (6.76)

change(Juvenile) (6.77)

6.6.10 Copepod Senility

When the time since a copepod became mature reaches AI (480 hours), it enters the

senile stage. This function is only called when copepods are in the adult stage.

if (Ar > AI) then change(Senile) (6.78)

6.6.11 Death by Senility

When copepods are senile, they die linearly over time. This rule is defined as a proba-

bility of dying that increases over time, such that 480 hours after becoming an adult, a

copepod has will have a death probability of 1.

pchange(Dead,
1

L−Ar
) (6.79)

The first time this rule is called, Ar is 480 hours - the value of AI . (See section 6.6.10).

L is a constant parameter, set at 960 hours, so the initial probability of death is 1
480 .

After another 479 hours, Ar will be 959 hours, and the probability of death will be 1.

6.6.12 Death by Cannibalism

When copepods are cannibalised, the contents of their pools are assimilated by the

cannibal in rules 6.64 and 6.66. Their pools must be set to zero, and they enter the dead
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stage. Differently to senility or infant mortality, their pools are not remineralised, but

are fully assimilated by the cannibal.

Apool = 0 (6.80)

Npool = 0 (6.81)

Cpool = 0 (6.82)

change(Dead) (6.83)

6.6.13 Dead Copepod Remineralisation

release(Apool, A) (6.84)

Apool = 0 (6.85)

release(Npool, N) (6.86)

Npool = 0 (6.87)

When copepods die, they are assumed to immediately remineralise their pools into

their ambient environment. Death occurs either by infant mortality, or senility.

6.6.14 Pellet Remineralisation

release(Aremin Apool 4t, Aconc) (6.88)

Apool = Apool −Aremin Apool 4t (6.89)

release(Nremin Npool 4t,Nconc) (6.90)

Npool = Npool −Nremin Npool 4t (6.91)

Here, the ammonium and nitrate pools are remineralised at rates Aremin and Nremin,

both 0.00208333 µg Nitrogen h−1. For each, the internal pool is reduced, and the same

amount is remineralised into the ambient environment using the release function (See

section 3.3.2). As both dead copepods and pellets have their pools remineralised by

bacteria in this way, the function is set to run in both the Dead and Pellet stages.
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6.7 Top Predators

This section describes the way the issue of trophic closure is addressed by Planktonica.

The method of modelling closure has been recently formulated by John Woods [58].

The extension has been made to the original WB model in collaboration with Matteo

Sinerchia and Adrian Rogers. The support for top predators is included in Planktonica,

but the interfaces within VEW Scenario do not yet support closure. Hence, this section

should be considered as contribution towards future work.

Representing trophic closure requires some extensions to the scenario, in which the

existence of the predators (size, concentration and location) is defined. The biological

model then defines the behaviour of the top predators - ingestion and remineralisation.

6.7.1 Method

A single Lagrangian-Ensemble particle is created in each biological layer, representing

a sub-population of top predators in that layer. The size of the sub-population needs

to be set by the user, which is not possible using conventional planktonica rules, since

sub-population sizes can only be changed indirectly using the API. The predators have

ingestion rules similar to those for copepods ingesting diatoms.

This requirement is met by making the size, concentration, and position of top

predators part of the scenario. From the VEW Scenario application, rules for these

three functions can be written, which cause the creation of three variables; the size St,

the total number of predators, Nt, and a function that defines the vertical distribution

of top predators, Dt.

In VEW Designer, any functional group can be defined to be a top predator group,

by use of a tickbox. At this point, the size variable St becomes available for use in rules,

and the ingestion rules for the top predators are written in the usual way. Dt and Nt

however are not exposed to the user; they are used internally. This is described below,

alongside the rules for trophic closure in the new WB model.
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6.7.2 Modifications to the Scenario

Size Function

The size of the top predators for WB is defined as follows:-

St = if (d0 < dyear) and (dyear < dmax) then s0(p+ 1)dyear−d0 (6.92)

else 0

As mentioned, it depends on the day of the year, dyear, which counts the number

of days that have elapsed since January 1st of the current year, hence St is part of

the scenario. The predators exist for a season of the year between day d0 (121 days),

and dmax (221 days). The initial size is defined by parameter s0 (3 mm), and p is

the bodyweight percentage growth (0.07, no units). Hence, the size of the predators

increases over time.

Total Concentration

A single rule is used to define the total concentration of predators, Nt. The predators

first become ‘active’ at d0, and they decrease exponentially with e-folding time, dstar set

to 5, until they have all died off at day dmax.

Nt = Nback+ if (d0 ≤ dyear) and (dyear < dmax) (6.93)

then (n0 −Nback) e
− (dyear−d0)

dstar else 0

The value of Nt is then used to position the predators at the beginning of each

timestep, using the vertical distribution function below.

Vertical Distribution

The vertical distribution defines the proportion of the total concentration assigned to

each depth.

Dt = if (z < 100) then 0.01 else 0 (6.94)
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Behind the curtain, this rule is executed at the beginning of the timestep in the

following way. For each predator in existence (which is one per biological layer), its sub-

population size c is set to the value of DtNt, where z is the depth of the top predator

being considered, and Nt is the total concentration previously defined. Since there is

one top predator per layer, and layers are one metre tall in the WB model, the total Dt

of all the top predators is 1, and the total of all the sub-populations will be equal to Nt;

this must be the case.

6.7.3 Modifications to the Biological Model

Ingestion

The ingestion rules for top predators are below. The weighting function is similar to that

we have seen previously for copepods, but the weight ratio used previously is replaced

with a function of the size of the predators, St, and the maximum size, Smax (40 mm).

T refers to the ambient temperature, and Tr is a reference temperature (10◦C).

WTG = (0.3 + 0.7(
T

Tr
)+ (if (St > Smax0 then 1 (6.95)

else

(
0.225(0.000194 ∗ S2.59

t )
Smax

)0.7

The variety iterator, P ∗ here contains three members: juvenile, adult and senile

copepods. Pmin is the minimum concentration threshold for ingestion (plankton m−3),

which here is set to zero for all three stages of copepod to be ingested. The half-

saturation constant kI is set to 4x10−6 plankton m−3.

Ig = min (WTG1x10−5

 if
(
P
∗
> Pmin

)
then

(P ∗−Pmin)2

(P ∗−Pmin)+kI

else 0

 , (6.96)

St0.6156e−0.0321(dyear−d0))

ingest(P ∗
,

 if (P ∗
> Pmin) Ig

else 0

) (6.97)
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Remineralisation

As the top predators assimilate the contents of the copepods they ingest, these need

to be remineralised to the ambient environment in each layer. The carbon, nitrate and

ammonium that were ingested, are all remineralised as ammonium, using the conversion

factor rac.

release(Cingestrac +Ningest +Aingest, A) (6.98)

6.8 Particle Management and Scenario Settings

The model is completed by adding particle management and scenario settings into other

interfaces described in chapter 7. These settings are as follows.

• Diatom particles are set to have an initial sub-population size of 25000, distributed

at 20 particles per metre between 0 and 200m, and they begin in their live stage.

This is a total of 4000 particles.

• Particle management splits both living and cyst diatoms when 20 or fewer particles

(of that stage) exist in a layer, and merges whenever more than 40 particles exist

in a layer.

• Dead diatoms are merged so that there is at most 1 in a layer.

• Copepods are initialised with a sub-population size of 17, distributed between

0 and 200m at 3 particles per metre; a total of 600 particles. They begin the

simulation as juveniles.

• For newborn, juvenile, adult and senile particles, the particle management is set

to merge whenever there are more than 600 particles of that stage in the col-

umn. However, this condition is never met in practice, since the time between

reproduction and death by senility is always less than the time between birth and

reproduction.
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• Copepods in the dead, pellet and cannibalised stage however are merged down to

1 particle per layer, since they simply sink and remineralise.

• Top predator initialisation is not yet supported by VEW Scenario, so for the

present, the initialisation has been manually coded into the XML file; Planktonica

compiles this successfully. Top predators are created at 1 particle per metre, with

sub-population size defined by the rules in section 6.7.

• Particle management is set to merge predators when there is more than one per

layer, but this will not be necessary in practice since the top predators do not

move.

• The location of the simulation used for experiments in this thesis is the Azores

ecosystem at 41◦N, 27◦W, and the water column is fixed at this point.

• Simulations begin at 0600 hours, on March 1st 1995.



Chapter 7

The Virtual Ecology Workbench

The modelling language described in the previous chapter is only of practical value when

it is compiled into an executable simulation, which will require initial conditions and

climate data, and if the results can be analysed to show meaningful emergent properties.

The purpose of this chapter is to describe how this is done by the other components of

the framework that Planktonica fits into: the Virtual Ecology Workbench (VEW).

The VEW is a suite of applications that together allow design and execution of

plankton ecosystem simulations and analysis of the results. In this chapter, the com-

position of the VEW is explained. This thesis contributes the modelling language (the

engine of the VEW), the model builder, the compiler and an interactive debugging tool,

but for complete design and analysis of simulations, other applications are required, and

have been written by a team of other authors. Table 7.1 shows the set of applications,

their purposes and authors.

The specification for a model is stored in a single XML document. This document is

created by VEW Designer, and the other applications in the VEW may extend the XML.

When all the applications have added their sections, compilation can be performed, in

which Java source files and binary data files are created. The Java source files are then

compiled into classes, and are packaged together with the binary data files into a single

JAR file. The JAR file then contains the entire specification, input data and execution

code for a model instance.

129
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Component Purpose Author

Modelling Language The rule-building language for models Wes Hinsley

VEW Controller Project management, and guides model building Adrian Rogers

VEW Designer The interface for building models Wes Hinsley

VEW Species Builder Specifies parameterisations of functional groups Adrian Rogers

VEW Particle Manager Specifies particle management rules Adrian Rogers

VEW Scenario Climate Data (Boundary Conditions), Events Adrian Rogers

VEW Data Viewer Climate Data Visualiser Matteo Sinerchia

VEW Output Control Output options, logging Adrian Rogers

VEW Compiler Compilation of complete model Wes Hinsley

VEW Run Control Launching batches of simulations Adrian Rogers

VEW LiveSim Interactive visualisation of models Wes Hinsley

VEW Analyser Off-line visualisation of results Adrian Rogers

VEW Documenter Produces PDF specification of model Evan Weaver

Figure 7.1: The components of the VEW

7.1 VEW Controller

VEW Controller is the first interface met by a VEW user, shown in figure 7.2. It

allows the creation of a new model, perhaps based on a previously created model, or

the alteration of models that have not yet been completed. Both new creations and

alterations are handled by launching VEW Designer. Once models have been completed,

and projects have been created using that model, then VEW Controller prevents further

alteration of the model, thus ensuring consistency between the results obtained from

running a model, and the source model.

After a model has been created using VEW Designer, VEW controller allows any

number of projects to be made using that model; a project exists purely to provide
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organisation, allowing the user to give a name to a certain investigation being carried out

with a certain model. Within each project, any number of named experiments may be

created, where an experiment defines an instance of a simulation: the parameterisation

of the model to be used.

VEW Controller then guides the user sequentially through creating parameterisa-

tions of functional groups, initialisation and particle management, defining the scenario

for the model, the logging options, and finally compilation and execution.

Figure 7.2: VEW Controller



CHAPTER 7. THE VIRTUAL ECOLOGY WORKBENCH 132

7.2 VEW Designer

VEW Designer provides the interfaces for creating functional groups, chemicals (possibly

with action spectra), and the rules, separated into functions and sub-functions. New

variables or parameters may be created, and VEW Designer requires a default value and

units to be specified.

An important property of VEW Designer is that it is customised to the job of

creating Planktonica rules, rather than being akin to a generic equation editor. It

prevents the creation of invalid rules by only allowing the user to choose from a menu of

valid options, at each stage of rule creation. For example, when defining an assignment,

VEW Designer will only allow the user to choose a variable on the left hand side, and a

numerical expression on the right hand side. Alternatively, when defining a conditional

functional, VEW Designer only allows a boolean expression on the left hand side, and

a function on the right hand side. We believe this makes model building easier for the

user.

Figure 7.3 shows the basic composition of the XML document after the user has

created the model using VEW Designer; a single kernel tag, and a number of functional

group tags and chemical tags exist.

7.3 VEW Species Builder

After using the model builder to specify the functional groups, chemicals and pigments

in the system, VEW Controller, initiated by Arun Rishi [42], and largely developed by

Adrian Rogers [44], is then used to specify species of the functional group, and varieties

of each species, which have been described in figure 3.8.

For each species, the values of a and b for each parameter are set, and for each

variety, the value of the base parameter, x, is set. At least one species and variety must

exist for all functional groups; these are created by default. Any number of additional

species and varieties may then be created.
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Kernel

Physics, Column and System Variables

Functional Groups

Name

State, Param, VState, VParam, VIter

and Export Variables

Stages

Functions/Sub Functions

Name

Local and VLocal Variables

Rules

Chemicals

Name

CState, CParam variables

and Export Variables

Pigment Flag

Functions/Sub Functions

Name

Local Variables

Rules

Action Spectra

Spectrum

Figure 7.3: XML Document after VEW Designer
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Figure 7.4: Setting Variety Iterators and Variety-Specific Parameters in VEW Species

Builder
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Figure 7.4 shows the way that the values for parameters are set. If variety-based

variables have been used, then the variety iterator set, described in section 4.3.9, is shown

in the parameters screen, where each stage of each variety can be included among the

varieties that the iterator set refers to. The values for each variety-dependent parameter

may then be set as shown.

The changes that the Species Builder introduces to the XML Document are shown

in figure 7.5, specifically a number of species tags may be added within each functional

group, and a number of variety tags may exist within the species tag.

Kernel

FGs Chemicals

Species

Name

XParameter

Param List {name,a,b}
VIter Contents and VParam Values

Varieties

Name

XValue -

Figure 7.5: Changes made to XML Document by VEW Species Builder

7.4 VEW Particle Manager

Here, the initial conditions and particle management conditions for each variety may

be set up. Figure 7.6 shows where the initial concentration of particles per metre is

set, (where each particle is a sub-population), and the depth boundaries between which

the particles are initially distributed. Also the starting size of the sub-population, and

values for all of the state variables are set here. The default values are those the user

gave when creating the variables in VEW Designer. In the case of variety-based state

variables, separate entries appear for each stage of each variety. If the upper and lower

limit values are different, then the random number generator (see section 4.5.5) is used

to pick a value between the limits.
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Figure 7.6: Particle Management and Initialisation

The run conditions define particle management rules during the simulation. These

rules allow variation of the number of individual trajectories, thus affecting demographic

noise, while avoiding excessive computational cost.

Two methods are provided; the first splits the largest sub-populations should the

concentration fall below a threshold, and the second merges the smallest sub-populations

should the concentration rise above a threshold. The thresholds are set by the user in
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VEW Controller, and the scope of particle management can be to each layer individually,

or to the whole water column as if it were a single layer.

Various sorting algorithms are used to implement this efficiently, and other research

projects [33] have investigated alternative methods of controlling demographic noise.

The XML document is changed as shown in figure 7.7; for each variety, the initial

particle stage, and the general particle management rules are added. General rules will

exist for each stage of the functional group.

Kernel

FGs

Species

Varieties Chemicals

Particle Management

-

Initial

ppm, depth{upper,lower}
count{upper,lower}
all State, VState {upper,lower}

General

splitrule{stage,scope,value}
mergerule{stage,scope,value}

Figure 7.7: Changes made to XML Document by VEW Particle Manager

7.5 VEW Scenario

The VEW Scenario component shown in figure 7.8 is now used to define parameters for

the water column itself. The main map shows the physical position of the water column

in the ocean, which here has been set to a fixed location using the tracking mode menu on

the right. Alternatively, a forward integration can be set, where the column starts at the

specified position, and moves around the ocean, or even a backward integration where a

starting position is calculated such that the column ends at the specified position at the

time specified at the bottom. These settings define the input data used for calculating

the physical properties of the column, as described in section 3.3.1.

The scenario is the specification of the external conditions for the model; it is un-
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Figure 7.8: VEW Scenario

affected by feedback from the ecosystem. It consists of two parts; firstly the initial

conditions describe the complete initial state of the simulation. This includes the time,

and associated setup of the physical properties of the column, the chemical concentra-

tions and the initial placement of different particle types.

The boundary conditions define the forcing climatological data which the simulation

reads each timestep. From this data, along with biofeedback, the physical properties of

the column are calculated. The VEW Scenario application provides these conditions as

binary files, produced when the user specifies the location and path of the water column

for the duration of the simulation.

To simulate any kind of external input to the water column, such as one-off oil spills
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Figure 7.9: VEW Scenario Event Manager

or continual regular doses of pollution, events are provided. An event is any forced

change to a property in the simulation, such as an increase in a certain chemical, or an

increase in the number of a certain variety of plankton. One special event exists at the

beginning of all simulations; it contains definitions for the initial chemical concentrations

(or chemical profiles) in each layer.

Figure 7.9 shows the event manager interface. Events can be set to affect a certain

proportion of the water column (upper and lower depth limit). They can start at any

time and date in the simulation, repeating with a certain frequency, until a certain

number of occurrences has been reached. An event with zero occurrences causes the

events to continue forever at the specified frequency.

The scenario and events interfaces add a new block to the XML document, as shown

in figure 7.10. The information added includes everything necessary to recreate the

scenario from nothing; the time and duration data, location, what type of trajectory
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the column should take, along with the chemical profiles and any other events the user

created.

Kernel

FGs

Species

Varieties

PM

Chemicals

Scenario

-

start time, duration, lat and long

fixed/forward/backward integration,

column depth, weather model.

Events (Initial, and any user-defined)

date, time, frequency,

occurrences, top depth

bottom depth, items,

actions, quantities

Figure 7.10: Changes made to XML Document by VEW Scenario and Event Manager

7.6 VEW Data Viewer

The Data Viewer, figure 7.11, made by Matteo Sinerchia [46] lets the user view the data

that Scenario will use as input data. This includes visualisation of the nutrient profiles,

velocity fields, and Levitus profiles for temperature. The current data set that can be

visualised is the climate data of the world between 1961 and 2001. This is purely a

visualisation tool for Scenario; it makes no changes to the XML document.

7.7 VEW Output Control

Any variable in a VEW simulation can be logged for analysis; depending on the number

of particles in the simulation and the number of internal state variables that are required

for analysis, the output data could become very large, and carry a resulting performance

cost. For the WB model, a simulation with full output data produces about a gigabyte

of data per year.

The VEW Output Control interface, shown in figure 7.12, allows the user to define
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Figure 7.11: VEW Data Viewer

which variables are required for analysis. Figure 7.13 shows the changes made to the

XML document. Separate logging options are set for every variety. For each, the range of

variables that can be logged is separated into the state variables of functional groups, the

ambient physical properties, ambient concentrations of varieties, and ambient chemical

concentrations; recall that ambient means at a particle’s instantaneous depth. The

‘environment’ group logs the values of physical, chemical or biological properties for the

whole column, allowing profiles of the column to be plotted.

In either case (variety or environment group), for each group of variables to log,

the user gives a start and end time, between which logging of that group is active, and

the number of timesteps between samples (called frequency). Finally, a list of variables

within that group is included, giving the name, description, and a flag to set whether

logging is enabled on that variable.
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Figure 7.12: Output Options

Kernel

FGs

Species

Varieties

PM
Chemicals

Scenario

Output Control

Variety (or environmentgroup)

FG/Phy/Bio/Chem

freq, after, until

for each var:

{name,desc,log}

Figure 7.13: Changes made to XML Document by VEW Output Control
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7.8 VEW Compiler

Planktonica’s compiler is a contribution of this thesis. It performs a single pass of the

XML document, producing a set of new classes for functional groups, species, varieties,

their variables and parameters, chemicals and pigments, and a single system class used

for initialisation, scenario and logging options. These new classes, along with a set of

predefined classes for the physics, data structures, and file handling, are compiled with

the standard javac compiler to produce an executable code.

The classes are then placed into a single JAR file, along with the binary data pro-

duced by Scenario, and a copy of the model XML file, by the VEW Controller applica-

tion, when VEW Compiler finishes.

7.9 VEW Run Control

For executing the compiled model code, the VEW Run Control interface is used. At

present, the VEW does not generate code that can be run in parallel, however for exper-

iments concerning noise and stability, it is often necessary to run the same experiment

many times with different random seeds. Similarly, many useful investigations can be

made by running models that are identical except for the value of one parameter.

The run controller facilitates this, allowing the user to spawn simulations on various

target machines, with different random seeds or parameter values.

7.10 VEW LiveSim

LiveSim is a contribution of this thesis: a front-end to drive the simulation. At any

time, the user can retrieve virtually all of the data regarding the current state of the

system. This data includes so far:-

• Internal state variables for all particles in simulation, including sorting particles

by any variable.

• Column properties (sunlight, zenith height, turbocline, etc.)
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Figure 7.14: Run Manager
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• Column total populations for functional groups, species and varieties in each stage.

• Physical properties over depth (temperature, density, etc.)

• Chemical and pigment concentrations over depth in particle’s internal pool, or in

solution.

• Concentrations of different particle types over depth, in each stage.

• Histograms for sub-population size, to check for particle management anomalies.

.

This list has been extended over the course of debugging, so that it already contains

many useful diagnostics for debugging models. LiveSim then lets the user step through a

complete timestep, or run until a certain time, or step more slowly through the different

routines that occur during a timestep, to see the changes as they occur. The screenshot

in figure 7.15 shows the state of the top-most live diatom in the main window, and

the profile of copepod concentration with the water column surface on the left, depth

increasing to the right. The red line shows the turbocline depth.

LiveSim has been extremely useful, if not crucial for rapid debugging of models.

Although it has been designed as a developer tool, it has recently been redeveloped as

an M.Eng Computing group project, with particular focus on the user interface and the

range of different graphs that can be plotted over time [37].

7.11 VEW Analyser

VEW Analyser, originally developed by Sarah Bennett as VEWData, and more recently

re-written by Adrian Rogers [44], allows a large range of standard plots to be made.

Analyser has been tailored over the years to provide the graphs that are most useful

to the research needs met so far. It differs to LiveSim in that it is executed after a

simulation has finished, and produces a much wider set of diagnostic graphs.
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Figure 7.15: LiveSim 26 hours into the WB Model

While some planning was required to ensure that the simulation produces output in

the correct format, Analyser itself is not a contribution of this thesis. A screenshot is

shown in figure 7.16, and for further information refer to other documentation [43].

7.12 VEW Documenter

This utility was conceived early in this work, involving converting the model specification

file into a Latex document, so that having made a model, a PDF file would automatically

be created, listing the rules, and the variable types used in each rule, along with their

descriptions and units.

That utility was substantially extended recently by Evan Weaver to include preview
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Figure 7.16: VEW Analyser

graphs of each rule, and diagrams of the whole model, rather than just the particle rules.

To support Evan’s work, an extra run-mode was added to the simulation, that if

activated, keeps track of maximum and minimum run-time values of all variables; this

was necessary for plotting graphs at the correct scale in the output document.
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Evaluation

This chapter presents some results from experiments created using Planktonica, and

the VEW. The results of running the implementation of WB described in chapter 6

are described first. The purpose is to demonstrate that the particles in the simulation

behave as their rules suggest.

The following two sections describe how models can be built onto the WB model;

the first experiment provides a very crude modelling of an oil spillage, and the second

adds a delay between ingestion and excretion in the copepods. The purpose of these two

sections is to demonstrate the ease with which new experiments can be made, and to

outline how the process of model development, integration and analysis may be carried

out using the VEW.

8.1 Results of new WB Model

In this section, a selection of results from the new WB model (chapter 6) are presented,

beginning with environmental data for solar irradiance and ammonium concentration.

Following that are audit trails showing the behaviour of a single diatom or copepod in

its environment. Finally, six years of data from the diatom and copepod yearly cycle

are plotted.

The solar irradiance for a year in the simulation is shown in figure 8.1. The graph

148
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Figure 8.1: Visible irradiance at noon during year 6, starting on March 1st

is taken from the 6th year of a simulation (March 1st 2000 to March 1st 2001) with

readings taken at noon each day.
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Figure 8.2: Concentration of Ammonium at noon during year 6, starting on March 1st

The ammonium concentration in the top 100 metres in the 6th year is shown in

figure 8.2. The diatom bloom depletes the ammonium in the top thirty metres, and it

is only later returned as the turbocline drops, and ammonium that was remineralised

or excreted by copepods is returned to the mixing layer.
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Figure 8.3: Audit trail for depth of a diatom, with turbocline

Figure 8.3 shows the depth of a single diatom, as described in rule 6.2. The diatom is

randomly displaced when above the turbocline (rule 6.3), and sinks uniformly below the

turbocline (rule 6.4). The slight delay between the turbocline falling and the turbulence

affecting the particle is caused by the history; the turbulence rule uses the value of the

turbocline from the previous timestep.
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Figure 8.4: Audit trail for energy of a diatom, with irradiance and depth

In figure 8.4, the energy of a diatom is plotted (see section 6.5.3), along with its

depth superimposed on the solar irradiance. The closer the depth is to the brighter

light, the steeper the rise in energy is, due to photosynthesis (rule 6.9). When the

particle is further away from the light, energy losses due to respiration (rule 6.10) take

over and the energy level drops.

The energy curve lags a little behind the changes in irradiance; this is due to light

adaptation (rule 6.5), by which the diatom takes a short period of time to respond to

changes in irradiance.
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Figure 8.5: Diel migration of a copepod

Figure 8.5 shows a copepod performing diel migration, as in rule 6.38. Notice that the

copepod tries to avoid being spotted by swimming downwards when it is momentarily in

brighter light (rule 6.42); the brighter the light, the faster is downward speed, as shown

particularly on the first day, where it began very near to the surface.
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Figure 8.6: Seasonal variation of a copepod

Figure 8.6 shows the life-cycle of a copepod, from juvenile to senile, and death.

It begins as a juvenile, and when its carbon pool reaches 100µg, it becomes an adult

(rule 6.71). The model assumes that an adult copepod reproduces exactly 480 hours

after reaching adulthood (rule 6.73), which is implemented by counting the subsequent

timesteps in variable Ar (rule 6.72). After 480 hours, the copepod reproduces, and

the carbon the parent gained since maturity is assumed to be distributed among the

offspring; the carbon pool of the parent is reduced to 100µg (rule 6.64).

A number of newborn copepods are created at this point, but the parent enters its

senile stage (rule 6.78). The ‘death by senility’ (rule 6.79) causes the sub-population

size to reach zero precisely 480 hours after reproduction.

Figure 8.7 shows a 6 year run of live diatoms (the cyst stage is not shown). The

system stabilises after an initial transient of around three years.
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Figure 8.8 shows the corresponding 6 years of copepod populations - here, the juvenile

stage is shown. Although the annual population cycle appears to be stabilising towards

the end of the run, it is clear that an equilibrium has not yet been reached.

Figure 8.9 shows a comparison between the original WB model, and the new imple-

mentation. As before, the new graphs only show live (non-cyst) diatoms and juvenile

copepods. There are differences between the graphs, but this is to be expected, since

WB has been reinvented with many changes to fit the Lagrangian Ensemble metamodel.

Furthermore, the original WB run shown on this graph is using 100 particles per metre,

whereas the new model is only using 20. Notice that the characteristic of a large peak in

the first year for diatoms is consistent with the original results, and while the placement

of the spring and autumn blooms is slightly different, the shape of the graphs shows

similar traits.

The copepod population is consistently lower than results of the original WB model,

and seems to be dropping slightly annually after the second year. This may be a stabil-

isation issue, but certainly needs further investigation.

Further graphs from the original WB model are available for comparison in the

literature [56, 59].
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Figure 8.7: Six-year variation of live diatom population
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Figure 8.8: Six-year variation of juvenile copepod population



CHAPTER 8. EVALUATION 158

L
o

g
 g

ra
p

h
s
 o

f 
p

la
n

k
to

n
 w

it
h

in
 t

h
e
 s

im
u

la
ti

o
n

, 
o

ri
g

in
a
l

W
B

 M
o

d
e
l 

v
s
 n

e
w

 W
B

 M
o

d
e
l.

1
0

0
0

1
0

0
0

0

1
0

0
0

0
0

1
E

+
0

6

1
E

+
0

7

1
E

+
0

8

1
E

+
0

9

1
E

+
1

0

1
E

+
1

1

1
3
6
6

7
3
1

1
0
9
6

1
4
6
1

1
8
2
6

2
1
9
1

D
a
y
s

Plankters

P
h

y
to

 -
 o

ri
g

in
a

l

Z
o

o
 -

 o
ri

g
in

a
l

P
h

y
to

 -
 N

e
w

Z
o

o
 -

 N
e

w

Figure 8.9: Population cycles for old and new WB model,compared



CHAPTER 8. EVALUATION 159

8.2 Modelling Oil Spillage

The significance of modelling the effect that ecological disasters such as oil slicks have on

the ocean ecosystem needs little justification [22]. Here, the WB model is extended with

a simple representation of an oil slick, which is a single sub-population of oil droplets.

Droplets float (rather than being affected by turbulence or sinking as diatoms are - see

rules 6.2, 6.4 and 6.3), and occlude light - an effect modelled by setting an individual’s

pool for a particular pigment.

Over time, the oil droplet is dispersed at a fixed rate; the method of dispersal,

whether by human intervention, bacterial breakdown or any other process, is not mod-

elled explicitly. Note that this is not a formal scientific study of the biological processes,

but an evaluation of Planktonica’s model-building capabilities

The purpose is to demonstrate the ease with which a functional group, a pigment,

and rules for oil dispersion can be introduced using Planktonica, and to demonstrate

the effects of occlusion caused by the oil. We would expect diatom photosynthesis to be

reduced but longer term impact on the diatom population cycle is less obvious.

8.2.1 Implementation

A new functional group called OilDroplet is created. An entire slick is modelled as a

single Lagrangian Ensemble sub-population of droplets. Oil droplets can exist in one

of two stages, active, and inactive. When a droplet is active, it is defined to contain

1µg Oil, whereas when it is dispersed, it contains no oil; biofeedback depends on the oil

content of the droplets, and the pigmentation of the oil (see section 6.3).

When the slick is introduced, all the droplets are in their active stage, but over

time, droplets are assumed to be degraded in some unspecified way, and a proportion,

d in each timestep move from the active to inactive stage. Particle management then

merges the inactive droplets into one sub-population. Hence, during the simulation

there will be precisely two Lagrangian Ensemble sub-populations of oil dropets, one of

them containing all the active droplets, and the second all the inactive droplets.
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Oil pigmentation

A new pigment (a chemical with action spectra), Oil, is created. The action spectra

are shown below; they differ from chlorophyll in that they affect visible light equally

across all wavelengths. Note that the purpose is not to model precisely the pigmentation

properties of oil; the spectra below are contrived to clearly demonstrate the biofeedback

effect.

w (nm) 300 357.5 387.5 412.5 437.5 462.5 487.5 512.5 537.5 562.5 587.5

χ 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

e 1.0 1.0 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

w (nm) 612.5 637.5 662.5 687.5 712.5 737.5 787.5 900 1100 1300 1500

χ 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

e 0.8 0.8 0.8 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0

w (nm) 1700 1900 2100 (2300)

χ 0.0 0.0 0.0

e 1.0 1.0 1.0

Figure 8.10: Action spectra for oil biofeedback

Active Oil Content

While the oil droplet is active, it is defined to contain 1µg of oil pigment. As described

in section 6.3, biofeedback depends on the concentration of all chemicals within the

particles, and the associated action spectra for each chemical.

Oilpool = 1 (8.1)

This rule could equivalently have been specified as an initialisation property of the

oil using the initialisation options in VEW Controller (see section 7.4), since it remains

constant throughout the lifetime of an active oil particle.
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Dispersion

The dispersion model is very simple: a droplet has a certain probability, d, of being dis-

persed, whereupon it ceases to act as an occluder. This is applied to the sub-population

using the pchange function (see section 3.4.1). The proportion d of the sub-population

is set to change stage from active to inactive in each timestep. Three instances of the

experiment will be run, setting d to 0.002, 0.0025 and 0.003.

pchange(inactive, d) (8.2)

Inactive Oil Content

When an oil droplet is inactive, it is assumed that the pigment has been removed by

some means, so the amount of oil pigment in the droplet is set to zero, and it has no

further biofeedback effect. The assignment:-

Oilpool = 0 (8.3)

is defined to occur in each timestep for particles in the inactive stage.

Scenario

The scenario extends that of the new WB model, by adding a single event (see sec-

tion 7.5). The event adds one sub-population of 10000 oil droplets in the active stage,

35 days into the second year of the simulation, at the surface of the column. Figure 8.11

shows the amount of oil at the surface over time for each dispersion rate, d.

8.2.2 Results

The immediate effect of the oil slick is the turbidity of the water increases near the surface

as the oil cells absorb the sunlight. Figure 8.12 shows the visible irradiance at noon each

day. Compare this to the unaffected visible irradiance in figure 8.1. Notice particularly

that the turbidity of the water in figure 8.1 is greatest shortly after the beginning of

the year, whereas on figure 8.12, this fluctuation happens after the interruption in the
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Figure 8.11: Oil Slick content in column

irradiance due to the oil slick. In both cases, this coincides with the timing of the diatom

bloom.

The effect of the oil is that the spring bloom of diatoms is pushed substantially

later, shown in figure 8.13. This is because the diatoms are not getting enough light

to increase their energy by photosynthesis (rule 6.9), and their energy pool does not

reach the threshold for cell division (rule 6.15). When the bloom finally does occur, the

diatom population rises steeply; the diatoms have gained less energy by photosynthesis,

but their nutrient pools will not have been affected. Note that the graphs of diatoms

only show their live stage; cyst diatoms in the winter months are not shown, explaining

the absence of any diatoms at regular intervals.

The effect of the slick on the future years of the diatom population is shown in

figure 8.14. Curiously, the spring bloom of diatoms in future years is generally larger than
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the control graph, whereas the autumn bloom is consistently lower for all experiments

affected by the oil slick. A possible explanation for this emergent behaviour is as follows:-

• Oil spillage occurs. Diatoms fill their nutrient pools, but the oil restricts photo-

synthesis, and their energy does not reach cell division threshold.

• As a result, copepods have less food, and their population is lower.

• When the oil disperses enough for the energy pools to rise, the diatoms divide

rapidly since their nutrient pools are full, and the copepod population is smaller.

• As the diatom population rises rapidly the copepod population also rises rapidly,

as they now have a higher concentration of food than in ‘normal’ years.

• Since the copepods reached adulthood later due to lack of food, they also reach

senility and death later. Therefore, there is a higher concentration of copepods

in Autumn than in normal years, which makes the Autumn bloom lower than in

‘normal’ years.

• As the following spring bloom approaches, there are fewer diatoms, due to the

copepods heavier grazing in Autumn. The population therefore rises more slowly,

and there is less food for the copepods than usual in Spring. Hence fewer diatom

are ingested by copepods as they bloom, and the diatom bloom is larger than

in usual years. The copepod bloom is later as a result, and hence the cycle has

perpetuated.

8.2.3 Discussion

These experiments required simple additions to the WB model, taking only a few minutes

to implement. The emergent behaviour exhibited by the experiments, however, would

take substantially longer to analyse and explain. A wide range of experiments can be

conducted extremely easily by altering the parameters and pigmentation, or the time of

year at which the oil slick occurs, and its initial properties.
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More interesting experiments could involve the breakdown of the oil, which has been

approximated to a constant dispersion parameter. The dispersion process in the model

simply causes the occluding pigment to be ‘turned off’. It would be straightforward

to model the chemical breakdown of the oil and its effect on the ambient chemistry by

adding new chemicals and new rules for the associated chemical processes. This would

be similar to the rules for remineralisation of detritus and faecal pellets in WB, for

example.

In practice, oil is broken down by a range of physical, chemical and biological pro-

cesses [31]. In principle, these could all be described in some way with suitable extensions

to the model.
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Figure 8.12: Effect of oil on visible irradiance
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Figure 8.13: Diatoms in second year for different dispersion rates
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Figure 8.14: Diatoms from second to fifth year for different dispersion rates
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8.3 Gut-passage time

This experiment implements work by Simon Smith [47], in which a time delay was

introduced for copepods, between ingestion and excretion. This was a project conducted

over one summer, modifying the C version of the WB model.

In the unmodified WB model, copepods excrete faecal pellets, the contents of which

depend on what the copepod has eaten in that timestep. The gut-passage experiment

introduces a time delay between ingestion and excretion, so that the copepod in one

timestep excretes pellets that contain what it ate some time ago. If the copepod has

migrated during that time, then the associated pellet will be produced at a different

location. In this way, copepods are able to transport material from one location to

another. This includes nutrients that are released back into solution by remineralisation,

but may also include additional chemicals in the environment, e.g. pollutants or toxins,

previously ingested by the copepod.

8.3.1 Implementation

A chemical P , representing an abitrary pollutant is introduced, with initial concentration

zero throughout the column. The particles inherit Ppool, Puptake and Pingest as usual.

At midnight on day 90 (1st May), 50 µgP is added at depth of 25m. This is below the

deepest location of the turbocline, which stays above 20m between May and November.

Diatoms that have dropped below the turbocline will sink, uptake the pollutant at a

rate uP , up to a maximum content of pmax. Copepods will ingest them, and then swim

upwards for food, excreting the pollutant gt hours later.

During the time gt, copepods may swim upwards to feed on diatoms, or they may

also ingest the diatoms on the way down to deeper water. The gut-passage time may

even be long enough for them to swim upwards to feed, and then return to deeper water

before excreting the pollutant. Therefore pollutant will be distributed above and below

the turbocline.
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Diatom Uptake

The maximum amount of pollutant a diatom can contain is set at pmax = 1.16x10−7 µgP.

Its maximum rate of uptake is set at uP = 4x10−10 µgPh−1. A local variable ppot (µg P )

is created and used to store the maximum amount of pollutant that can be absorbed,

before pmax is exceeded.

ppot = pmax − Ppool (8.4)

The diatom then uptakes at its maximum rate uP , converting from per-hour into

per-timestep, unless it will exceed its maximum content pmax, in which case the rate is

reduced accordingly.

if (ppot > 0) then uptake(min(uP4t, ppot), P ) (8.5)

As before, this is subject to the availability of the pollutant, and depletion handling.

The amount obtained in the previous timestep is stored in Puptake as before. The pool

must be adjusted accordingly:-

Ppool = Ppool + (Puptake4t) (8.6)

Diatom Remineralisation

Dead diatoms are assumed to remineralise pollutant in the same way they remineralise

ammonium. Hence, two rules are added to the diatom remineralisation function, in

which Premin is the remineralisation rate, here 0.00208333 µgPh−1.

release(PreminPpool4t, P ) (8.7)

Ppool = Ppool − (PreminPpool4t) (8.8)
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Copepod Growth

When copepods ingest diatoms, the Ppool of the diatoms will automatically be placed

in the Pingest state variable within the copepod. A single rule is added in the growth

function to assimilate the pollutant into the pool:-

Ppool = Ppool + Pingest (8.9)

Copepod Excretion

A state variable, Ph is created; it has an associated history that will store the pollutant

ingested over a specified number of previous timesteps. The experiments conducted will

test a history size of up to 4 hours. The history size, measured in timesteps, is set to 9;

this implies Ph can hold the value of the current timestep, and an additional 8 previous

steps. Ph is set as follows:-

Ph = Pingest (8.10)

This assigns the value of Pingest from the previous timestep to the value that Ph will

have in the next timestep.

The pollutant is now remineralised over time. A paramter gt (hours) is defined

representing the time between ingestion and excretion. For the experiments here, we

set this to 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 hours in turn.

release(P
h[
−gt
4t

]
, P ) (8.11)

The subscript of Ph defines the index of the timestep to be retrieved, relative to the

present. For example, if gt is 0.5 hours, then dividing by the timestep gives −1, meaning

a single timestep ago. Finally, the pool must be reduced:-

Ppool = Ppool − P
h[
−gt
4t

]
(8.12)
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8.4 Results

Figure 8.15 shows the initial injection of pollutant at 25 metres. It disperses over time

as diatoms sink to 25m and uptake the pollutant. Note that the distribution is not

visible on this graph due to the scaling; the concentration of the pollutant is 50µgPm−3,

whereas the concentrations when distributed are much smaller, as shown in later graphs.

Figure 8.15: Initial injection of pollutant, (not distribution)

Figures 8.16, 8.17 and 8.18 show the distribution of the pollutant for each gut passage

time. For each gut passage size, the left-hand graph shows the concentration above

the injection depth and turbocline, whereas the right-hand graph shows concentration

below the injection depth. Note that the scales of the graph vary, as the concentration

of pollutant occurs in patches of variable concentration.

In general, as the gut passage time increases, the pollutant concentration between
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about 60 and 100 metres increases. Referring back to the graph of copepod migration,

figure 8.5, this is logical, since copepods spend more of their time in deeper, darker

water to avoid predators, than near the surface. If their gut passage time is shorter,

then there is a higher likelihood of excreting the pollutant nearer to its source at 25m.

The pollutant concentration above the turbocline when gut passage time is 1 hour,

is substantially less than if gt is increased to 1.5 hours. This is also explained by

diel migration; copepods only venture near the surface, risking predation, if they are

sufficiently hungry. On their way to the turbocline, they pass through the source of

pollutant, and ingest sinking diatoms that have been uptaking pollutant. If their gut

passage time is long enough, then they will be able to swim up to ingest on diatoms

near the surface, and down again, before the pollutant they ingested on the way up, is

excreted.
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Figure 8.16: Pollutant distribution (1), above and below the injection point



CHAPTER 8. EVALUATION 174

Figure 8.17: Pollutant distribution (2), above and below the injection point
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Figure 8.18: Pollutant distribution (3), above and below the injection point
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8.5 Discussion

In this experiment, pollutant was inert, and did not affect the particles, but the principle

of copepods transporting chemical is interesting. In the case of ammonium, which

becomes depleted at times of year shown in figure 8.2, copepods with a gut-passage time

may transport ammonium from deeper water to the surface, supplying more nutrients

for diatom cell division [8].

The rate at which disease spreads in water is also related to the gut passage time.

Such diseases could affect the plankton [5], or they could be diseases that affect humans,

such as cholera [45].

All of these experiments are easily built in Planktonica; the gut passage experiment

demonstrates the behaviour of variables with associated histories, which make the con-

struction of the experiment here possible in about 15 minutes, compared to several weeks

of project work implementing changes by hand to the C code [47, 8].



Chapter 9

Conclusions

In this chapter, the success and limitations of Planktonica as a modelling environment

are summarised, and future improvements and applications are described.

9.1 Summary and Reflections

9.1.1 Model building pre-Planktonica

The code in question was the original WB model, which was built in modules, but

the interactions between them were complex. For example, the presence of chlorophyll

in diatoms was embedded into the physics in a way that made separation of biology

and physics complicated. Adding a new type of particle with a new pigment would

require a software engineer to unpick the way that chlorophyll was integrated, and

then implement one of two options. The first, and the most forward thinking would

be to implement a dynamic data structure so that any number of pigments could be

added, and reimplement chlorophyll, and the new pigment using that structure. The

alternative would be to duplicate the chlorophyll code to get the required behaviour in

place as quickly as possible.

Unfortunately, in many cases, the technical challenge of creating a highly flexible and

extendable system, combined with the time taken understanding the tangled structure

that already existed, proved too much for short-term project students, who contributed

177
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largely to the development of the old WB model, albeit in small enhancements and

additions that would never be properly incorporated, or built upon.

9.1.2 The design of Planktonica

The design of Planktonica was established by taking the C code for a one-off simulation,

separating the generic elements of the code from the model-specific elements of the

code, and then rewriting the generic parts so that they support any configuration of

model-specific elements that could be reasonably imagined.

For example, where the original WB model contained complex code to describe how

copepods ingest diatoms, Planktonica was designed to support the generic behaviour

that any type of plankton may ingest any other type of plankton. This facilitates the

construction of complex food webs.

This generates a separation between metamodel and object model, and allows the

user to think of the biology of a model completely separately from the physics and

chemistry. This simplifies not only the implementation of models, but also the knowledge

and effort required by a single user in designing them.

The use of the Lagrangian Ensemble metamodel requires rules to be written for

individual plankters, and forbids particle-to-particle interaction. In the original WB

model, both of these rules were broken since some rules were written for individuals,

others for sub-populations; when implementing ingestion, complex code for particle-to-

particle interaction was required as the copepods ingested the diatoms.

This complexity is no longer needed; all the complexity of handling data structures

(including the particle-to-particle interaction for ingestion), all the rules that implicitly

require manipulation of sub-population sizes and indeed, everything except the task of

writing rules to define the behaviour of an individual plankton, are hidden ‘behind the

curtain’. Where access to variables kept behind the curtain is required, 7 simple API

calls are provided.
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9.1.3 Building Models

Models in Planktonica are built ‘in front of the curtain’ without the user ever having

to worry about the housekeeping code beneath. This makes the process very much

easier, since the user only has to think about the biological and chemical processes of

the individuals being described.

This is in contrast to previous versions of the VEW, where the user would, for exam-

ple, need to understand the inner workings of the physics code, in order to implement

biofeedback, and face the likely risk of introducing a separate bug in the physics.

Furthermore, a model is now built out of components that are based on nature:

functional groups, species, varieties and chemicals, with their associated rules. These

are abstractions familiar to a biologist, compared with the various underlying data

structures that are only readily accessible to a software engineer.

Planktonica can be seen as a system that can build complex models from simple

components. A model containing many functional groups and chemicals is no more

complex to design, than a model containing just one functional group.

9.1.4 Building Rules

When rules are built, Planktonica attempts to remove as many potential sources of

error as possible. For example, it is impossible to reference a variable or a chemical that

doesn’t exist, since variables and chemicals are selected from menus that offer choices

that are valid.

It is not possible in Planktonica to form a syntactically incorrect statement, since

the user is guided at each step of building a rule, and can only choose options that make

syntactic sense. Similar type-checking options prevent the user from assigning values to

constant parameters, for example. Some safety features may seem a little inconvenient,

for example subtraction and division are only permitted as binary functions to avoid

potential associativity errors. While some may think this unnecessary, it is a very small

price to pay to reduce the potential for common mathematical errors.

A common problem in biological modelling is the conflicting use of units, a prime
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example being chemical quantities being expression in either millimols or micrograms.

In Planktonica, all ‘built-in’ concentrations are expressed in µgm−3. This may not be

to everyone’s preference, and perhaps future enhancements could allow Planktonica to

switch to mMolm−3 if the user prefers. The important point is that all units must be

consistent, regardless of which unit is chosen. To this end, all variables and values in

Planktonica have units defined by the user, and a unit checker is available to verify the

consistency of the units in each rule.

Variable Types

Planktonica does have a number of types of variables, which the user must familiarise

themselves with. They are not very complicated in terms of software engineering, but

they have separate purposes, and cannot be treated like simple mathematical identifiers.

For example, local variables are not buffered, but state variables are - see section 4.3;

they behave differently when read, or written to. Using them interchangeably will result

in the model behaving differently to how the user intends. However, on examination,

the different types have different purposes, that are necessary to the system, and correct

understanding and use of, for example, exported variables, can create neater models -

see section 4.3.5.

The variety-based types (section 4.3.9) are more complex data-types, especially since

when writing rules, the user will not have set up their contents yet, thus making their

use somewhat predictive and abstract. However, they also offer an elegant way of stating

that a particle ingests any number of other particles at different rates, using just a single

rule. Therefore, if the user can fully understand the motivation for variety-based types,

he will find them very efficient in parameterising ingestion.

The Metamodel API

The API defines all the ways that rules in front of the curtain must interact with hidden

properties behind the curtain. In the early stages of analysing the C version of the WB

model, it seemed that many API calls may be required for many different biological
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processes. However, after much analysis of what behaviour is considered ‘generic’, only

seven function calls were required, and their behaviour is on the whole very simple. The

ingest function (section 3.4.5) requires some explanation, but given an understanding of

the variety-based types, its meaning becomes intuitive.

There is always the possibility that some new behaviour in the future will be required

that the current API cannot describe. However, in constructing the new WB model,

the experiments described in chapter 8, and a model for testing fisheries recruitment,

which is also being conducted in Planktonica [46], it has not been necessary to extend

this API.

Buffering and Timesteps

Another area which must be understood is the buffering issue, whereby when a rule

makes reference to a state variable, the result is taken from the previous timestep. For

example, if a user writes rules that say a = bx and b = ay, then they may be surprised

that the value of a in the second rule is not bx, but rather it is the value of a from the

previous timestep.

A similar issue with differential equations was mentioned in section 4.4, whereby

differential equations have an implicit 4t, which can cause particular confusion if the

equation is already meant to imply a change in a variable during one timestep.

9.1.5 Model Debugging

Nothing prevents the user from writing a rule that contains a divide by zero, or the

log of a negative number, for example. As a consequence, the user can assign such an

‘illegal’ value to a chemical pool, which may be involved in biofeedback. This can cause

system crashes, since the physics code that handles biofeedback is sensitive to incorrect

concentrations of pigment. As biofeedback affects all the physical properties of the water

column, and the turbocline, such errors can rapidly propogate. Since a single particle

with an invalid chemical pool can cause such a crash, this type of error can be hard to

track down.



CHAPTER 9. CONCLUSIONS 182

This problem needs addressing, and in general model debugging is an area that

requires attention. Previously, VEW Analyser [43] was used to debug models after they

had been run. This can plot audit trails of all state variables within particles, and these

often show the area of behaviour that is not working correctly. However, this requires

the simulation to have been run already, and locating the particle with a fault can be

very time consuming.

As part of the work described here, LiveSim was therefore created, which enabled a

model to be debugged interactively for the first time. Particle state variables, chemical

concentrations, particle concentrations and physical properties of the column can be dis-

played at each timestep. Particles to view can be sorted by any of their properties, for

example the heaviest copepod, (and hence the first to reproduce) can be tracked. It also

supported snapshots, whereby a simulation can dump its state at regular ‘checkpoints’,

and debugging can resume at any checkpoint. LiveSim proved extremely useful in de-

bugging models, and was extended further by a debug option when compiling models,

which also enabled the user to view local and exported variables for each particle. It has

recently been further modified to improve its presentation and offer a wider selection of

graphs [37].

However, even with LiveSim exposing all the variables, the reasons why results do

not appear as the user expected can take some while to diagnose. There is scope for

further improvements in this area.

9.1.6 The Legacy Problem

Researchers in the past have written many different versions using the common code of

the WB model, each one has no indication of where the model came from, what bugs in

the common code have been fixed, or how the model was generally composed.

Planktonica goes along way toward solving these problems. Firstly, the ‘common

code’ as it was in the past, cannot be changed by the user; this is fixed into the simula-

tion. Thus, if bugs behind the curtain are fixed, or new metamodel behaviour is added,

such changes are to be done by the future developers of Planktonica, not the users who
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build models.

The structure of the specification file used for a model distinguishes clearly between

functional groups, functions, subfunctions and chemicals. The intention is that any

of these can be archived, and new models can be built by importing arbitrary com-

ponents from a repositry. The present state of development is that the importing of

such components is available, but the automatic archival of complete models has not

been implemented. The importer ensures internal consistency (i.e., the existence of all

necessary chemicals and variables for an imported function to be valid).

As this archival process is developed further, a system similar to a Concurrent Version

System (CVS) may be considered, which would allow sharing of model components,

and automatic updates to the latest versions. In this way, Planktonica may become a

valuable tool to the wider community of biological oceanographers.

9.2 Future Work

The interfaces in Planktonica are considered as prototypes, and improvements to these

would aid users further in constructing models efficiently; some of this work is already

underway. For example, LiveSim has already been re-implemented [37], with many new

features for interactively debugging and demonstrating models.

The physics code, which has been provided as standard for all simulations in Plank-

tonica so far, is being moved towards the front of the curtain, so that the user has a cer-

tain amount of control over what physical behaviour is modelled within the column [44].

This improvement is motivated by a new model for optics [27] offering substantial im-

provements over the existing one. In the future, an environment similar to Planktonica,

but applied to the physics of the model, may allow physical oceanographers to design

their own models for the physics.

The current metamodel treats the ocean as a 1-D column; other work is ongoing to

develop a 3-D metamodel [44], allowing the modelling of animals that can change their

position horizontally. Significantly, models that have been built for the 1-D metamodel
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will require little change in order to work in the 3-D model, the changes being those

relevant to position and motion.

Such modifications will require an increase in resources. While the old WB model

in C used parallel-processing via MPI, the new Java code created by Planktonica does

not yet have this capability, although certain design decisions such as variable buffering

were made noting that they would be helpful to future parallelisation. The issue of per-

formance and memory usage is one that will need addressing as the size and complexity

of models increases.

Meanwhile, Planktonica is already being used to test theories of fisheries recruit-

ment [46], and a model is planned to investigate the visual properties of predators [52].

A model of three trophic layers in a food-web model has been unsuccessfully attempted

in the past [36]; this model is also a candidate to be implemented in Planktonica.

9.3 Concluding Remarks

In summary, Planktonica offers a revolutionary improvement in building models when

compared to writing them in C, and offers a substantial number of features that aim

to make rule building as safe and efficient as possible. It is not perfect and there are

areas where an incomplete understanding of its design can lead to confusion and error.

However, as demonstrated in chapter 8 a good understanding of how Planktonica works

can yield useful scientific results extremely quickly. Over a longer time frame, the

separation of metamodel from object model, and the provision for archival offer a new

way forward for co-ordinated e-science in the field of biological oceanography.

This thesis aimed to establish whether it is possible to construct complex models of

plankton ecosystems using only primitive rules. The conclusion is that it is possible,

as long as the metamodel and object model are separated correctly, and the interfaces

between them are understood.
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VEW Designer Interface

This appendix contains screenshots that accompany the process of building a model,

such as the Plankton-complaint WB model shown in chapter 6.

When creating rules, a preview of the rule is shown in the bottom of the rule editor,

although it is rendered rather more crudely than is shown in the text of the thesis. The

text shows the way the equations and rules are output from the VEW, specifically using

a LaTeX-based package called VEW Documenter [53]. This takes a Planktonica model

specification, and produces typeset documentation for that model, pretty much as it

is presented here. Note that an improved rule previewer based on VEW Documenter

is actually supported in the current version of Planktonica, although at present the

rendering process is rather slow.

Figure A.1 demonstrates the addition of a functional group to the model. An im-

porter window is shown which allows either creation of a new functional group, or import

of a functional group that has previously been archived. While the data structures for

archival are in place, the functionality for automatic archival of model components has

not yet been fully implemented.

Figure A.2 shows the process of adding stages to a model. Buttons are available to

add, remove, or rename stages. For the currently highlighted function or sub-function,

the checkboxes allow the user to specify which stages that rule should be executed in. If

the rules selected contain two assignments to the same state variable, (which is forbidden

185
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Figure A.1: Adding a functional group

- see section 4.2.1), then an error message is shown and the action is prevented.

Figure A.3 shows the specification of action spectra; the ‘chemical has pigmentation’

box is ticked, allowing the table on the left to be added. Only the values in the third
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Figure A.2: Adding stages

column can be edited, since the wavelengths are built into the physics code.

A function is created in figure A.4. This causes the Rule Editor window to appear,

and rules can be added within the function. To add a sub-function, the corresponding

add button below the sub-function list is chosen. Functions can be moved to sub-

functions, and vice versa, although if a sub-function contains an exported variable, then

attempting to move it will generate an error message, since functions cannot include

exported variables.

An assignment is created in figure A.5. The user can navigate through the elements

of a rule by either selecting nodes in the tree in the middle left of the screen; clicking

on any node or leaf causes the contents of the middle-right pane (the ‘detail’ window)

to update. Clicking on any of the components in the detail window will cause the list

in the top right of the screen to update; this list contains the statements, functions or

expressions that are available to the user for the element in the detail window they have

selected. An add or replace button becomes available as appropriate.
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Figure A.3: Defining pigmentation

The surround button allows an expression to be placed around a highlighted element,

(e.g. expression e could be surrounded with a cos, to become cos(e). The opposite can
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Figure A.4: Creating a function, and a rule within a function

be carried out with the ‘remove surround’ button, causing cos(e) to return to e.

Selecting an element in the detail window and clicking on the ‘expand’ button causes

the details of the selected element to appear in the detail window, and the selected

tree node on the left will be updated appropriately. Many detail windows also allow

arguments to be swapped, hence it is easy to swap a < b into b < a. In figure A.5

however, the swap button is disabled, since the left-hand side of an assignment must

always be a variable, whereas the right hand side can be any numerical item.

Variables are chosen as shown in figure A.6; a menu of all available options for the

selected item are shown, separated into categories for convenience.

The ‘conditional’ expression is selected in figure A.7, and the three arguments when

the conditional is edited are shown in figure A.8.
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Figure A.5: The Rule Editor, and creating an assignment

An exported variable is created in figure A.9. The variable creation window, top

right in the figure, allows the user to set the name, description, default value when

appropriate and history size of the variable being created. For parameters, local variables

and exported variables, history size is not applicable. For local variables and exported

variables, the default value is not applicable.

For variety-based variables, this window is where the user explicitly states that a

variable is linked to another one.

Figure A.10 shows a completed rule, in this case motion for diatoms. Note that the

window in the bottom shows only a quick preview of the rule being built. It was hoped
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Figure A.6: Choosing ‘z’ for the left-hand side of the assignment

that a suitable method of showing equations in a typeset way would be available in

Java, however no suitable software has been found for this purpose. The preview button

launches a window that displays a typeset version of the equation, but it is at present

too slow for automatic rendering.

Figure A.11 shows how a numerical value is edited in the VEW designer interface.

Note that numerical values must also have units.

Figure A.12 shows how an expression with multiple arguments may be added. Plank-

tonica allows associative operators (‘add’, ‘multiply’, ‘max’, ‘min’, ‘and’ and ‘or’) to take

one or more arguments.
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Figure A.7: Selecting a conditional function for the right-hand side.
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Figure A.8: Editing the conditional function.
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Figure A.9: Creating an exported variable
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Figure A.10: The completed diatom motion equation

Figure A.11: Editing a numerical value
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Figure A.12: Expressions with multiple arguments
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